1887

Abstract

(TSWV) causes severe economic losses in many crops worldwide and often overcomes resistant cultivars used for disease control. Comparison of nucleotide and amino acid sequences suggested that tomato resistance conferred by the gene can be overcome by the amino acid substitution C to Y at position 118 (C118Y) or T120N in the TSWV movement protein, NSm. Phylogenetic analysis revealed that substitution C118Y has occurred independently three times in the studied isolates by convergent evolution, whereas the substitution T120N was a unique event. Analysis of rates of non-synonymous and synonymous changes at individual codons showed that substitution C118Y was positively selected.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.026708-0
2011-01-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/1/210.html?itemId=/content/journal/jgv/10.1099/vir.0.026708-0&mimeType=html&fmt=ahah

References

  1. Acosta-Leal, R., Bryan, B. K., Smith, J. T. & Rush, C. M. ( 2010; ). Breakdown of host resistance by independent evolutionary lineages of Beet necrotic yellow vein virus involves a parallel C/U mutation in its p25 gene. Phytopathology 100, 127–133.[CrossRef]
    [Google Scholar]
  2. Adkins, S. ( 2000; ). Tomato spotted wilt virus – positive steps towards negative success. Mol Plant Pathol 1, 151–157.[CrossRef]
    [Google Scholar]
  3. Aramburu, J. & Martí, M. ( 2003; ). The occurrence in north-east Spain of a variant of Tomato spotted wilt virus (TSWV) that breaks resistance in tomato (Lycopersicon esculentum) containing the Sw-5 gene. Plant Pathol 52, 407.[CrossRef]
    [Google Scholar]
  4. Boiteux, L. S., Nagata, T., Dutra, W. P. & Fonseca, M. E. N. ( 1993; ). Sources of resistance to tomato spotted wilt virus (TSWV) in cultivated and wild-species of Capsicum. Euphytica 67, 89–94.[CrossRef]
    [Google Scholar]
  5. Chare, E. R. & Holmes, E. C. ( 2006; ). A phylogenetic survey of recombination frequency in plant RNA viruses. Arch Virol 151, 933–946.[CrossRef]
    [Google Scholar]
  6. Chare, E. R., Gould, E. A. & Holmes, E. C. ( 2003; ). Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol 84, 2691–2703.[CrossRef]
    [Google Scholar]
  7. Cho, J. J., Custer, D. M., Brommonschenkel, S. H. & Tanksley, S. D. ( 1996; ). Conventional breeding: host-plant resistance and the use of molecular markers to develop resistance to tomato spot wilt virus in vegetables. In Tospoviruses and Thrips of Floral and Vegetable Crops (Acta Horticulturae vol. 431), pp. 367–378. Edited by Kuo, C. G.. Leuven. : International Society for Horticultural Science.
    [Google Scholar]
  8. Ciuffo, M., Finetti-Sialer, M. M., Gallitelli, D. & Turina, M. ( 2005; ). First report in Italy of a resistance-breaking strain of Tomato spotted wilt virus infecting tomato cultivars carrying the Sw5 resistance gene. Plant Pathol 54, 564.[CrossRef]
    [Google Scholar]
  9. de Haan, P., Wagemakers, L., Peters, D. & Goldbach, R. ( 1990; ). The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen Virol 71, 1001–1007.[CrossRef]
    [Google Scholar]
  10. de Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D. & Goldbach, R. ( 1991; ). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol 72, 2207–2216.[CrossRef]
    [Google Scholar]
  11. Fraile, A. & García-Arenal, F. ( 2010; ). The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res 76, 1–32.
    [Google Scholar]
  12. García-Arenal, F. & McDonald, B. A. ( 2003; ). An analysis of the durability of resistance to plant viruses. Phytopathology 93, 941–952.[CrossRef]
    [Google Scholar]
  13. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  14. Hanssen, I. M., Lapidot, M. & Thomma, B. P. H. J. ( 2010; ). Emerging viral diseases of tomato crops. Mol Plant Microbe Interact 23, 539–548.[CrossRef]
    [Google Scholar]
  15. Haydon, D. T., Bastos, A. D., Knowles, N. J. & Samuel, A. R. ( 2001; ). Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. Genetics 157, 7–15.
    [Google Scholar]
  16. Hobbs, H. A., Black, L. L., Johnson, R. R. & Valverde, R. A. ( 1994; ). Differences in reactions among tomato spotted wilt virus isolates to three resistant Capsicum chinense lines. Plant Dis 78, 1220.
    [Google Scholar]
  17. Hoffmann, K., Qiu, W. P. & Moyer, J. W. ( 2001; ). Overcoming host- and pathogen-mediated resistance in tomato and tobacco maps to the M RNA of Tomato spotted wilt virus. Mol Plant Microbe Interact 14, 242–249.[CrossRef]
    [Google Scholar]
  18. Jahn, M., Paran, I., Hoffmann, K., Radwanski, E. R., Livingstone, K. D., Grube, R. C., Aftergoot, E., Lapidot, M. & Moyer, J. ( 2000; ). Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol Plant Microbe Interact 13, 673–682.[CrossRef]
    [Google Scholar]
  19. Janzac, B., Fabre, F., Palloix, A. & Moury, B. ( 2009; ). Constraints on evolution of virus avirulence factors predict the durability of corresponding plant resistances. Mol Plant Pathol 10, 599–610.[CrossRef]
    [Google Scholar]
  20. Karasawa, A., Okada, I., Akashi, K., Chida, Y., Hase, S., Nakazawa-Nasu, Y., Ito, A. & Ehara, Y. ( 1999; ). One amino acid change in cucumber mosaic virus RNA polymerase determines virulent/avirulent phenotypes on cowpea. Phytopathology 89, 1186–1192.[CrossRef]
    [Google Scholar]
  21. Kosakovsky Pond, S. L. & Frost, S. D. W. ( 2005a; ). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21, 2531–2533.[CrossRef]
    [Google Scholar]
  22. Kosakovsky Pond, S. L. & Frost, S. D. W. ( 2005b; ). Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22, 1208–1222.[CrossRef]
    [Google Scholar]
  23. Kumar, S., Dudley, J., Nei, M. & Tamura, K. ( 2008; ). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9, 299–306.[CrossRef]
    [Google Scholar]
  24. Latham, L. J. & Jones, R. A. C. ( 1998; ). Selection of resistance breaking strains of tomato spotted wilt tospovirus. Ann Appl Biol 133, 385–402.[CrossRef]
    [Google Scholar]
  25. Li, W., Lewandowski, D. J., Hilf, M. E. & Adkins, S. ( 2009; ). Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology 390, 110–121.[CrossRef]
    [Google Scholar]
  26. Lovato, F. A., Inoue-Nagata, A. K., Nagata, T., de Ávila, A. C., Pereira, L. A. & Resende, R. O. ( 2008; ). The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection. Virus Res 137, 245–252.[CrossRef]
    [Google Scholar]
  27. Margaria, P., Ciuffo, M. & Turina, M. ( 2004; ). Resistance breaking strain of Tomato spotted wilt virus (Tospovirus; Bunyaviridae) on resistant pepper cultivars in Almeria, Spain. Plant Pathol 53, 795.[CrossRef]
    [Google Scholar]
  28. Margaria, P., Ciuffo, M., Pacifico, D. & Turina, M. ( 2007; ). Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the Tsw gene. Mol Plant Microbe Interact 20, 547–558.[CrossRef]
    [Google Scholar]
  29. Matsumoto, K., Johnishi, K., Hamada, H., Sawada, H., Takeuchi, S., Kobayashi, K., Suzuki, K., Kiba, A. & Hikichi, Y. ( 2009; ). Single amino acid substitution in the methyltransferase domain of Paprika mild mottle virus replicase proteins confers the ability to overcome the high temperature-dependent Hk gene-mediated resistance in Capsicum plants. Virus Res 140, 98–102.[CrossRef]
    [Google Scholar]
  30. Meshi, T., Motoyoshi, F., Maeda, T., Yoshiwoka, S., Watanabe, H. & Okada, Y. ( 1989; ). Mutations in the tobacco mosaic virus 30-kD protein gene overcome Tm-2 resistance in tomato. Plant Cell 1, 515–522.[CrossRef]
    [Google Scholar]
  31. Moury, B., Morel, C., Johansen, E., Guibaud, L., Souche, S., Ayme, V., Caranta, C., Palloix, A. & Jacquemond, M. ( 2004; ). Mutations in potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum. Mol Plant Microbe Interact 17, 322–329.[CrossRef]
    [Google Scholar]
  32. Nagy, P. D. ( 2008; ). Recombination in plant RNA viruses. In Plant Virus Evolution, pp. 133–156. Edited by Roossinck, M.. Berlin & Heidelberg. : Springer.
    [Google Scholar]
  33. Naidu, R. A., Sherwood, J. L. & Deom, C. M. ( 2008; ). Characterization of a vector-non-transmissible isolate of Tomato spotted wilt virus. Plant Pathol 57, 190–200.
    [Google Scholar]
  34. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  35. Qiu, W. & Moyer, J. W. ( 1999; ). Tomato spotted wilt tospovirus adapts to the TSWV N gene-derived resistance by genome reassortment. Phytopathology 89, 575–582.[CrossRef]
    [Google Scholar]
  36. Roggero, P., Masenga, V. & Tavella, L. ( 2002; ). Field isolates of Tomato spotted wilt virus overcoming resistance in pepper and their spread to other hosts in Italy. Plant Dis 86, 950–954.[CrossRef]
    [Google Scholar]
  37. Ross, H. A. & Rodrigo, A. G. ( 2002; ). Immune-mediated positive selection drives human immunodeficiency virus type 1 molecular variation and predicts disease duration. J Virol 76, 11715–11720.[CrossRef]
    [Google Scholar]
  38. Sharman, M. & Persley, D. M. ( 2006; ). Field isolates of Tomato spotted wilt virus overcoming resistance in capsicum in Australia. Australas Plant Pathol 35, 123–128.[CrossRef]
    [Google Scholar]
  39. Sin, S.-H., McNulty, B. C., Kennedy, G. G. & Moyer, J. W. ( 2005; ). Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proc Natl Acad Sci U S A 102, 5168–5173.[CrossRef]
    [Google Scholar]
  40. Soellick, T.-R., Uhrig, J. F., Bucher, G. L., Kellmann, J.-W. & Schreier, P. H. ( 2000; ). The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci U S A 97, 2373–2378.[CrossRef]
    [Google Scholar]
  41. Soler, S., Cebolla-Cornejo, J. & Nuez, F. ( 2003; ). Control of diseases induced by tospoviruses in tomato: an update of the genetic approach. Phytopathol Mediterr 42, 207–219.
    [Google Scholar]
  42. Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S. & Okuno, T. ( 2002; ). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett 532, 75–79.[CrossRef]
    [Google Scholar]
  43. Thompson, G. J. & van Zijl, J. J. B. ( 1996; ). Control of tomato spotted wilt virus in tomatoes in South Africa. In Tospoviruses and Thrips of Floral and Vegetable Crops (Acta Horticulturae vol. 431), pp. 379–384. Edited by Kuo, C. G.. Leuven. : International Society for Horticultural Science.
    [Google Scholar]
  44. Tsompana, M., Abad, J., Purugganan, M. & Moyer, J. W. ( 2005; ). The molecular population genetics of the Tomato spotted wilt virus (TSWV) genome. Mol Ecol 14, 53–66.
    [Google Scholar]
  45. Tsuda, S., Kirita, M. & Watanabe, Y. ( 1998; ). Characterization of a pepper mild mottle tobamovirus strain capable of overcoming the L3 gene-mediated resistance, distinct from the resistance-breaking Italian isolate. Mol Plant Microbe Interact 11, 327–331.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.026708-0
Loading
/content/journal/jgv/10.1099/vir.0.026708-0
Loading

Data & Media loading...

Supplements

Layout of the M segment (about 5.8 kb) of (TSWV). Coding regions, represented as grey boxes, are NSm, encoded in the positive sense (rightward arrow), and the precursor G /G , encoded in the negative sense (leftward arrow). Non-coding regions are the 5′-UTR, the intergenic region (IR) and the 3′-UTR.

IMAGE

Sequence alignments of the M segment regions of TSWV isolates unable to infect resistant tomato cultivars with gene ( non-infecting; SNI) and able to infect these cultivars ( resistance-breaking; SRB). [PDF](100 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error