1887

Abstract

The membrane protein encoded by the US9 gene of alphaherpesviruses plays an important role during virion assembly and transport in neurons. Here, we demonstrate that in herpes simplex virus type 1 (HSV-1) strain KOS, due to base substitutions, the predicted TATA-box of US9 is mutated, and a premature stop is present at codon 58 of US9, which contains 91 codons in other HSV-1 strains. The TATA-box mutation also removes the native stop codon of the adjacent US8A gene, leading to extension of the coding region from 160 to 191 codons. Northern blot analyses revealed reduced transcription of US9 in cells infected with HSV-1 KOS. Moreover, a US9-specific antiserum did not detect any gene products in Western blot and immunofluorescence analyses of KOS-infected cells, indicating that the truncated protein is not stable. In contrast, Western blot reactions of a pUS8A-specific antiserum confirmed enlargement of this protein in HSV-1 KOS.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.026484-0
2011-01-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/1/167.html?itemId=/content/journal/jgv/10.1099/vir.0.026484-0&mimeType=html&fmt=ahah

References

  1. Breathnach, R. & Chambon, P. ( 1981; ). Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50, 349–383.[CrossRef]
    [Google Scholar]
  2. Brideau, A. D., Banfield, B. W. & Enquist, L. W. ( 1998; ). The Us9 gene product of pseudorabies virus, an alphaherpesvirus, is a phosphorylated, tail-anchored type II membrane protein. J Virol 72, 4560–4570.
    [Google Scholar]
  3. Brideau, A. D., Card, J. P. & Enquist, L. W. ( 2000; ). Role of pseudorabies virus Us9, a type II membrane protein, in infection of tissue culture cells and the rat nervous system. J Virol 74, 834–845.[CrossRef]
    [Google Scholar]
  4. Brown, S. M., Ritchie, D. A. & Subak-Sharpe, J. H. ( 1973; ). Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. J Gen Virol 18, 329–346.[CrossRef]
    [Google Scholar]
  5. Butchi, N. B., Jones, C., Perez, S., Doster, A. & Chowdhury, S. I. ( 2007; ). Envelope protein Us9 is required for the anterograde transport of bovine herpesvirus type 1 from trigeminal ganglia to nose and eye upon reactivation. J Neurovirol 13, 384–388.[CrossRef]
    [Google Scholar]
  6. Chowdhury, S. I., Onderci, M., Bhattacharjee, P. S., Al-Mubarak, A., Weiss, M. L. & Zhou, Y. ( 2002; ). Bovine herpesvirus 5 (BHV-5) Us9 is essential for BHV-5 neuropathogenesis. J Virol 76, 3839–3851.[CrossRef]
    [Google Scholar]
  7. Chowdhury, S. I., Mahmood, S., Simon, J., Al-Mubarak, A. & Zhou, Y. ( 2006; ). The Us9 gene of bovine herpesvirus 1 (BHV-1) effectively complements a Us9-null strain of BHV-5 for anterograde transport, neurovirulence, and neuroinvasiveness in a rabbit model. J Virol 80, 4396–4405.[CrossRef]
    [Google Scholar]
  8. Davison, A. J. ( 2010; ). Herpesvirus systematics. Vet Microbiol 143, 52–69.[CrossRef]
    [Google Scholar]
  9. Dix, R. D., McKendall, R. R. & Baringer, J. R. ( 1983; ). Comparative neurovirulence of herpes simplex virus type 1 strains after peripheral or intracerebral inoculation of BALB/c mice. Infect Immun 40, 103–112.
    [Google Scholar]
  10. Frame, M. C., McGeoch, D. J., Rixon, F. J., Orr, A. C. & Marsden, H. S. ( 1986; ). The 10K virion phosphoprotein encoded by gene US9 from herpes simplex virus type 1. Virology 150, 321–332.[CrossRef]
    [Google Scholar]
  11. Fuchs, W. & Mettenleiter, T. C. ( 1996; ). DNA sequence and transcriptional analysis of the UL1 to UL5 gene cluster of infectious laryngotracheitis virus. J Gen Virol 77, 2221–2229.[CrossRef]
    [Google Scholar]
  12. Fuchs, W., Klupp, B. G., Granzow, H., Osterrieder, N. & Mettenleiter, T. C. ( 2002; ). The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 76, 364–378.[CrossRef]
    [Google Scholar]
  13. Georgopoulou, U., Michaelidou, A., Roizman, B. & Mavromara-Nazos, P. ( 1993; ). Identification of a new transcriptional unit that yields a gene product within the unique sequences of the short component of the herpes simplex virus 1 genome. J Virol 67, 3961–3968.
    [Google Scholar]
  14. Georgopoulou, U., Kakkanas, A., Miriagou, V., Michaelidou, A. & Mavromara, P. ( 1995; ). Characterization of the US8.5 protein of herpes simplex virus. Arch Virol 140, 2227–2241.[CrossRef]
    [Google Scholar]
  15. Gierasch, W. W., Zimmerman, D. L., Ward, S. L., Vanheyningen, T. K., Romine, J. D. & Leib, D. A. ( 2006; ). Construction and characterization of bacterial artificial chromosomes containing HSV-1 strains 17 and KOS. J Virol Methods 135, 197–206.[CrossRef]
    [Google Scholar]
  16. Klopfleisch, R., Klupp, B. G., Fuchs, W., Kopp, M., Teifke, J. P. & Mettenleiter, T. C. ( 2006; ). Influence of pseudorabies virus proteins on neuroinvasion and neurovirulence in mice. J Virol 80, 5571–5576.[CrossRef]
    [Google Scholar]
  17. Leege, T., Fuchs, W., Granzow, H., Kopp, M., Klupp, B. G. & Mettenleiter, T. C. ( 2009; ). Effects of simultaneous deletion of pUL11 and glycoprotein M on virion maturation of herpes simplex virus type 1. J Virol 83, 896–907.[CrossRef]
    [Google Scholar]
  18. Lyman, M. G., Feierbach, B., Curanovic, D., Bisher, M. & Enquist, L. W. ( 2007; ). Pseudorabies virus Us9 directs axonal sorting of viral capsids. J Virol 81, 11363–11371.[CrossRef]
    [Google Scholar]
  19. Lyman, M. G., Kemp, C. D., Taylor, M. P. & Enquist, L. W. ( 2009; ). Comparison of the pseudorabies virus Us9 protein with homologs from other veterinary and human alphaherpesviruses. J Virol 83, 6978–6986.[CrossRef]
    [Google Scholar]
  20. McGeoch, D. J. ( 1990; ). Evolutionary relationships of virion glycoprotein genes in the S regions of alphaherpesvirus genomes. J Gen Virol 71, 2361–2367.[CrossRef]
    [Google Scholar]
  21. McGeoch, D. J., Dolan, A., Donald, S. & Rixon, F. J. ( 1985; ). Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J Mol Biol 181, 1–13.[CrossRef]
    [Google Scholar]
  22. McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., Perry, L. J., Scott, J. E. & Taylor, P. ( 1988; ). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69, 1531–1574.[CrossRef]
    [Google Scholar]
  23. McGraw, H. M., Awasthi, S., Wojcechowskyj, J. A. & Friedman, H. M. ( 2009; ). Anterograde spread of herpes simplex virus type 1 requires glycoprotein E and glycoprotein I but not Us9. J Virol 83, 8315–8326.[CrossRef]
    [Google Scholar]
  24. Nishiyama, Y., Kurachi, R., Daikoku, T. & Umene, K. ( 1993; ). The US 9, 10, 11, and 12 genes of herpes simplex virus type 1 are of no importance for its neurovirulence and latency in mice. Virology 194, 419–423.[CrossRef]
    [Google Scholar]
  25. Para, M. F., Goldstein, L. & Spear, P. G. ( 1982; ). Similarities and differences in the Fc-binding glycoprotein (gE) of herpes simplex virus types 1 and 2 and tentative mapping of the viral gene for this glycoprotein. J Virol 41, 137–144.
    [Google Scholar]
  26. Pellett, P. E. & Roizman, B. ( 2007; ). The family Herpesviridae: A brief introduction. In Fields Virology, 5th edn, pp. 2479–2499. Edited by Knipe, D. M. & Howley, P. M.. Philadelphia. : Lippincott Williams & Wilkins.
    [Google Scholar]
  27. Perelygina, L., Zhu, L., Zurkuhlen, H., Mills, R., Borodovsky, M. & Hilliard, J. K. ( 2003; ). Complete sequence and comparative analysis of the genome of herpes B virus (cercopithecine herpesvirus 1) from a rhesus monkey. J Virol 77, 6167–6177.[CrossRef]
    [Google Scholar]
  28. Polcicova, K., Biswas, P. S., Banerjee, K., Wisner, T. W., Rouse, B. T. & Johnson, D. C. ( 2005; ). Herpes keratitis in the absence of anterograde transport of virus from sensory ganglia to the cornea. Proc Natl Acad Sci U S A 102, 11462–11467.[CrossRef]
    [Google Scholar]
  29. Schaffer, P. A., Aron, G. M., Biswal, N. & Benyesh-Melnick, M. ( 1973; ). Temperature-sensitive mutants of herpes simplex virus type 1: isolation, complementation and partial characterization. Virology 52, 57–71.[CrossRef]
    [Google Scholar]
  30. Smith, K. O. ( 1964; ). Relationship between the envelope and the infectivity of herpes simplex virus. Proc Soc Exp Biol Med 115, 814–816.[CrossRef]
    [Google Scholar]
  31. Snyder, A., Polcicova, K. & Johnson, D. C. ( 2008; ). Herpes simplex virus gE/gI and US9 proteins promote transport of both capsids and virion glycoproteins in neuronal axons. J Virol 82, 10613–10624.[CrossRef]
    [Google Scholar]
  32. Sonnhammer, E. L., von Heijne, G. & Krogh, A. ( 1998; ). A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6, 175–182.
    [Google Scholar]
  33. Szpara, M. L., Parsons, L. & Enquist, L. W. ( 2010; ). Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations. J Virol 84, 5303–5313.[CrossRef]
    [Google Scholar]
  34. Telford, E. A., Watson, M. S., Perry, J., Cullinane, A. A. & Davison, A. J. ( 1998; ). The DNA sequence of equine herpesvirus-4. J Gen Virol 79, 1197–1203.
    [Google Scholar]
  35. Thompson, R. L., Cook, M. L., Devi-Rao, G. B., Wagner, E. K. & Stevens, J. G. ( 1986; ). Functional and molecular analyses of the avirulent wild-type herpes simplex virus type 1 strain KOS. J Virol 58, 203–211.
    [Google Scholar]
  36. Tomishima, M. J. & Enquist, L. W. ( 2001; ). A conserved alpha-herpesvirus protein necessary for axonal localization of viral membrane proteins. J Cell Biol 154, 741–752.[CrossRef]
    [Google Scholar]
  37. Tulman, E. R., Afonso, C. L., Lu, Z., Zsak, L., Rock, D. L. & Kutish, G. F. ( 2000; ). The genome of a very virulent Marek's disease virus. J Virol 74, 7980–7988.[CrossRef]
    [Google Scholar]
  38. Tyack, S. G., Studdert, M. J. & Johnson, M. A. ( 1997; ). Nucleotide sequence of canine herpesvirus homologues of herpes simplex virus type 1 US2, US3, glycoproteins I and E, US8.5 and US9 genes. DNA Seq 7, 365–368.
    [Google Scholar]
  39. Ushijima, Y., Luo, C., Goshima, F., Yamauchi, Y., Kimura, H. & Nishiyama, Y. ( 2007; ). Determination and analysis of the DNA sequence of highly attenuated herpes simplex virus type 1 mutant HF10, a potential oncolytic virus. Microbes Infect 9, 142–149.[CrossRef]
    [Google Scholar]
  40. Willemse, M. J., Strijdveen, I. G., van Schooneveld, S. H., van den Berg, M. C. & Sondermeijer, P. J. ( 1995; ). Transcriptional analysis of the short segment of the feline herpesvirus type 1 genome and insertional mutagenesis of a unique reading frame. Virology 208, 704–711.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.026484-0
Loading
/content/journal/jgv/10.1099/vir.0.026484-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 167 - 172

Expression of EGFP-tagged US9 proteins



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error