1887

Abstract

Zta, encoded by the BZLF1 gene of Epstein–Barr virus (EBV), is a transcription factor that is expressed during the immediate–early stage of the lytic cycle. The expression of Zta is crucial to viral lytic development. Earlier studies showed that Ku80 is a binding partner of Zta in ZKO-293 cells and is co-purified with Zta. This study verifies the interaction between Ku80 and Zta by using glutathione -transferase-pull-down and co-immunoprecipitation assays, and also by indirect immunofluorescence analysis. This investigation also reveals that Ku80 binds to Zta on Zta-response elements in the BHLF1 promoter, enhancing the promoter activity. This study also reveals that the interaction between Zta and Ku80 involves the C-terminal region of Zta and the 425 aa N-terminal region of Ku80. The interaction between these two proteins and the enhancement of transcription that is activated by Zta suggest that Ku80 is important to EBV lytic development.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.026302-0
2011-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/3/661.html?itemId=/content/journal/jgv/10.1099/vir.0.026302-0&mimeType=html&fmt=ahah

References

  1. Adamson, A. L. & Kenney, S. ( 1999; ). The Epstein-Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Virol 73, 6551–6558.
    [Google Scholar]
  2. Anderson, C. W. ( 1993; ). DNA damage and the DNA-activated protein kinase. Trends Biochem Sci 18, 433–437.[CrossRef]
    [Google Scholar]
  3. Bailey, S. G., Verrall, E., Schelcher, C., Rhie, A., Doherty, A. J. & Sinclair, A. J. ( 2009; ). Functional interaction between Epstein-Barr virus replication protein Zta and host DNA damage response protein 53BP1. J Virol 83, 11116–11122.[CrossRef]
    [Google Scholar]
  4. Bannister, A. J., Gottlieb, T. M., Kouzarides, T. & Jackson, S. P. ( 1993; ). c-Jun is phosphorylated by the DNA-dependent protein kinase in vitro; definition of the minimal kinase recognition motif. Nucleic Acids Res 21, 1289–1295.[CrossRef]
    [Google Scholar]
  5. Chai, W., Ford, L. P., Lenertz, L., Wright, W. E. & Shay, J. W. ( 2002; ). Human Ku70/80 associates physically with telomerase through interaction with hTERT. J Biol Chem 277, 47242–47247.[CrossRef]
    [Google Scholar]
  6. Chang, L. K. & Liu, S. T. ( 2000; ). Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28, 3918–3925.[CrossRef]
    [Google Scholar]
  7. Chang, Y. N., Dong, D. L., Hayward, G. S. & Hayward, S. D. ( 1990; ). The Epstein–Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J Virol 64, 3358–3369.
    [Google Scholar]
  8. Chang, L. K., Lee, Y. H., Cheng, T. S., Hong, Y. R., Lu, P. J., Wang, J. J., Wang, W. H., Kuo, C. W., Li, S. S. & Liu, S. T. ( 2004; ). Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem 279, 38803–38812.[CrossRef]
    [Google Scholar]
  9. Chang, L. K., Chuang, J. Y., Nakao, M. & Liu, S. T. ( 2010; ). MCAF1 and synergistic activation of the transcription of Epstein–Barr virus lytic genes by Rta and Zta. Nucleic Acids Res 38, 4687–4700.[CrossRef]
    [Google Scholar]
  10. Chen, Y. R., Lees-Miller, S. P., Tegtmeyer, P. & Anderson, C. W. ( 1991; ). The human DNA-activated protein kinase phosphorylates simian virus 40 T antigen at amino- and carboxy-terminal sites. J Virol 65, 5131–5140.
    [Google Scholar]
  11. Chen, L. W., Lin, L. S., Chang, Y. S. & Liu, S. T. ( 1995; ). Functional analysis of EA-D of Epstein-Barr virus. Virology 211, 593–597.[CrossRef]
    [Google Scholar]
  12. Chiu, Y. F., Tung, C. P., Lee, Y. H., Wang, W. H., Li, C., Hung, J. Y., Wang, C. Y., Kawaguchi, Y. & Liu, S. T. ( 2007; ). A comprehensive library of mutations of Epstein–Barr virus. J Gen Virol 88, 2463–2472.[CrossRef]
    [Google Scholar]
  13. Dickerson, S. J., Xing, Y., Robinson, A. R., Seaman, W. T., Gruffat, H. & Kenney, S. C. ( 2009; ). Methylation-dependent binding of the Epstein–Barr virus BZLF1 protein to viral promoters. PLoS Pathog 5, e1000356.[CrossRef]
    [Google Scholar]
  14. Dvir, A., Peterson, S. R., Knuth, M. W., Lu, H. & Dynan, W. S. ( 1992; ). Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc Natl Acad Sci U S A 89, 11920–11924.[CrossRef]
    [Google Scholar]
  15. Dvir, A., Stein, L. Y., Calore, B. L. & Dynan, W. S. ( 1993; ). Purification and characterization of a template-associated protein kinase that phosphorylates RNA polymerase II. J Biol Chem 268, 10440–10447.
    [Google Scholar]
  16. El-Guindy, A. S., Heston, L., Endo, Y., Cho, M. S. & Miller, G. ( 2002; ). Disruption of Epstein-Barr virus latency in the absence of phosphorylation of ZEBRA by protein kinase C. J Virol 76, 11199–11208.[CrossRef]
    [Google Scholar]
  17. Farrell, P. J., Rowe, D. T., Rooney, C. M. & Kouzarides, T. ( 1989; ). Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J 8, 127–132.
    [Google Scholar]
  18. Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W. & Delecluse, H. J. ( 2000; ). The Epstein–Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19, 3080–3089.[CrossRef]
    [Google Scholar]
  19. Flemington, E. & Speck, S. H. ( 1990; ). Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64, 1227–1232.
    [Google Scholar]
  20. Giampuzzi, M., Botti, G., Di Duca, M., Arata, L., Ghiggeri, G., Gusmano, R., Ravazzolo, R. & Di Donato, A. ( 2000; ). Lysyl oxidase activates the transcription activity of human collagene III promoter. Possible involvement of Ku antigen. J Biol Chem 275, 36341–36349.[CrossRef]
    [Google Scholar]
  21. Giffin, W., Torrance, H., Rodda, D. J., Prefontaine, G. G., Pope, L. & Hache, R. J. ( 1996; ). Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature 380, 265–268.[CrossRef]
    [Google Scholar]
  22. Giffin, W., Kwast-Welfeld, J., Rodda, D. J., Prefontaine, G. G., Traykova-Andonova, M., Zhang, Y., Weigel, N. L., Lefebvre, Y. A. & Hache, R. J. ( 1997; ). Sequence-specific DNA binding and transcription factor phosphorylation by Ku autoantigen/DNA-dependent protein kinase. Phosphorylation of Ser-527 of the rat glucocorticoid receptor. J Biol Chem 272, 5647–5658.[CrossRef]
    [Google Scholar]
  23. Gottlieb, T. M. & Jackson, S. P. ( 1993; ). The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131–142.[CrossRef]
    [Google Scholar]
  24. Gruffat, H., Renner, O., Pich, D. & Hammerschmidt, W. ( 1995; ). Cellular proteins bind to the downstream component of the lytic origin of DNA replication of Epstein-Barr virus. J Virol 69, 1878–1886.
    [Google Scholar]
  25. Gutsch, D. E., Holley-Guthrie, E. A., Zhang, Q., Stein, B., Blanar, M. A., Baldwin, A. S. & Kenney, S. C. ( 1994; ). The bZIP transactivator of Epstein-Barr virus, BZLF1, functionally and physically interacts with the p65 subunit of NF-kappa B. Mol Cell Biol 14, 1939–1948.
    [Google Scholar]
  26. Hoff, C. M. & Jacob, S. T. ( 1993; ). Characterization of the factor E1BF from a rat hepatoma that modulates ribosomal RNA gene transcription and its relationship to the human Ku autoantigen. Biochem Biophys Res Commun 190, 747–753.[CrossRef]
    [Google Scholar]
  27. Holley-Guthrie, E. A., Quinlivan, E. B., Mar, E. C. & Kenney, S. ( 1990; ). The Epstein-Barr virus (EBV) BMRF1 promoter for early antigen (EA-D) is regulated by the EBV transactivators, BRLF1 and BZLF1, in a cell-specific manner. J Virol 64, 3753–3759.
    [Google Scholar]
  28. Huang, J., Liao, G., Chen, H., Wu, F. Y., Hutt-Fletcher, L., Hayward, G. S. & Hayward, S. D. ( 2006; ). Contribution of C/EBP proteins to Epstein-Barr virus lytic gene expression and replication in epithelial cells. J Virol 80, 1098–1109.[CrossRef]
    [Google Scholar]
  29. Jackson, S. P., MacDonald, J. J., Lees-Miller, S. & Tjian, R. ( 1990; ). GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell 63, 155–165.[CrossRef]
    [Google Scholar]
  30. Kenney, S. C., Holley-Guthrie, E., Quinlivan, E. B., Gutsch, D., Zhang, Q., Bender, T., Giot, J. F. & Sergeant, A. ( 1992; ). The cellular oncogene c-myb can interact synergistically with the Epstein-Barr virus BZLF1 transactivator in lymphoid cells. Mol Cell Biol 12, 136–146.
    [Google Scholar]
  31. Knuth, M. W., Gunderson, S. I., Thompson, N. E., Strasheim, L. A. & Burgess, R. R. ( 1990; ). Purification and characterization of proximal sequence element-binding protein 1, a transcription activating protein related to Ku and TREF that binds the proximal sequence element of the human U1 promoter. J Biol Chem 265, 17911–17920.
    [Google Scholar]
  32. Kuhn, A., Stefanovsky, V. & Grummt, I. ( 1993; ). The nucleolar transcription activator UBF relieves Ku antigen-mediated repression of mouse ribosomal gene transcription. Nucleic Acids Res 21, 2057–2063.[CrossRef]
    [Google Scholar]
  33. Lees-Miller, S. P., Sakaguchi, K., Ullrich, S. J., Appella, E. & Anderson, C. W. ( 1992; ). Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol 12, 5041–5049.
    [Google Scholar]
  34. Lieberman, P. M. & Berk, A. J. ( 1990; ). In vitro transcriptional activation, dimerization, and DNA-binding specificity of the Epstein-Barr virus Zta protein. J Virol 64, 2560–2568.
    [Google Scholar]
  35. Lieberman, P. M. & Berk, A. J. ( 1991; ). The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev 5, 2441–2454.[CrossRef]
    [Google Scholar]
  36. Lieberman, P. M. & Berk, A. J. ( 1994; ). A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA – promoter DNA complex formation. Genes Dev 8, 995–1006.[CrossRef]
    [Google Scholar]
  37. Maldonado, E., Shiekhattar, R., Sheldon, M., Cho, H., Drapkin, R., Rickert, P., Lees, E., Anderson, C. W., Linn, S. & Reinberg, D. ( 1996; ). A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381, 86–89.[CrossRef]
    [Google Scholar]
  38. Mayeur, G. L., Kung, W. J., Martinez, A., Izumiya, C., Chen, D. J. & Kung, H. J. ( 2005; ). Ku is a novel transcriptional recycling co-activator of the androgen receptor in prostate cancer cells. J Biol Chem 280, 10827–10833.[CrossRef]
    [Google Scholar]
  39. Mimori, T., Akizuki, M., Yamagata, H., Inada, S., Yoshida, S. & Homma, M. ( 1981; ). Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J Clin Invest 68, 611–620.[CrossRef]
    [Google Scholar]
  40. Mo, X. & Dynan, W. S. ( 2002; ). Subnuclear localization of Ku protein: functional association with RNA polymerase II elongation sites. Mol Cell Biol 22, 8088–8099.[CrossRef]
    [Google Scholar]
  41. Niu, H. & Jacob, S. T. ( 1994; ). Enhancer 1 binding factor (E1BF), a Ku-related protein, is a growth-regulated RNA polymerase I transcription factor: association of a repressor activity with purified E1BF from serum-deprived cells. Proc Natl Acad Sci U S A 91, 9101–9105.[CrossRef]
    [Google Scholar]
  42. Nolens, G., Pignon, J. C., Koopmansch, B., Elmoualij, B., Zorzi, W., De Pauw, E. & Winkler, R. ( 2009; ). Ku proteins interact with activator protein-2 transcription factors and contribute to ERBB2 overexpression in breast cancer cell lines. Breast Cancer Res 11, R83.[CrossRef]
    [Google Scholar]
  43. Nussenzweig, A., Chen, C., da Costa Soares, V., Sanchez, M., Sokol, K., Nussenzweig, M. C. & Li, G. C. ( 1996; ). Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382, 551–555.[CrossRef]
    [Google Scholar]
  44. Ohno, M., Kunimoto, M., Nishizuka, M., Osada, S. & Imagawa, M. ( 2009; ). Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression. Biochem Biophys Res Commun 390, 738–742.[CrossRef]
    [Google Scholar]
  45. Pergola, F., Zdzienicka, M. Z. & Lieber, M. R. ( 1993; ). V(D)J recombination in mammalian cell mutants defective in DNA double-strand break repair. Mol Cell Biol 13, 3464–3471.
    [Google Scholar]
  46. Roberts, M. R., Han, Y., Fienberg, A., Hunihan, L. & Ruddle, F. H. ( 1994; ). A DNA-binding activity, TRAC, specific for the TRA element of the transferrin receptor gene copurifies with the Ku autoantigen. Proc Natl Acad Sci U S A 91, 6354–6358.[CrossRef]
    [Google Scholar]
  47. Rodgers, W., Jordan, S. J. & Capra, J. D. ( 2002; ). Transient association of Ku with nuclear substrates characterized using fluorescence photobleaching. J Immunol 168, 2348–2355.[CrossRef]
    [Google Scholar]
  48. Schepers, A., Pich, D. & Hammerschmidt, W. ( 1993; ). A transcription factor with homology to the AP-1 family links RNA transcription and DNA replication in the lytic cycle of Epstein-Barr virus. EMBO J 12, 3921–3929.
    [Google Scholar]
  49. Sinclair, A. J., Brimmell, M., Shanahan, F. & Farrell, P. J. ( 1991; ). Pathways of activation of the Epstein-Barr virus productive cycle. J Virol 65, 2237–2244.
    [Google Scholar]
  50. Speck, S. H., Chatila, T. & Flemington, E. ( 1997; ). Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol 5, 399–405.[CrossRef]
    [Google Scholar]
  51. Taylor, T. J. & Knipe, D. M. ( 2004; ). Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J Virol 78, 5856–5866.[CrossRef]
    [Google Scholar]
  52. Tuteja, R. & Tuteja, N. ( 2000; ). Ku autoantigen: a multifunctional DNA-binding protein. Crit Rev Biochem Mol Biol 35, 1–33.[CrossRef]
    [Google Scholar]
  53. Wang, Y., Li, H., Tang, Q., Maul, G. G. & Yuan, Y. ( 2008; ). Kaposi's sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: involvement of host cellular factors. J Virol 82, 2867–2882.[CrossRef]
    [Google Scholar]
  54. Wiedmer, A., Wang, P., Zhou, J., Rennekamp, A. J., Tiranti, V., Zeviani, M. & Lieberman, P. M. ( 2008; ). Epstein-Barr virus immediate-early protein Zta co-opts mitochondrial single-stranded DNA binding protein to promote viral and inhibit mitochondrial DNA replication. J Virol 82, 4647–4655.[CrossRef]
    [Google Scholar]
  55. Woodard, R. L., Lee, K. J., Huang, J. & Dynan, W. S. ( 2001; ). Distinct roles for Ku protein in transcriptional reinitiation and DNA repair. J Biol Chem 276, 15423–15433.[CrossRef]
    [Google Scholar]
  56. Zerby, D., Chen, C. J., Poon, E., Lee, D., Shiekhattar, R. & Lieberman, P. M. ( 1999; ). The amino-terminal C/H1 domain of CREB binding protein mediates zta transcriptional activation of latent Epstein-Barr virus. Mol Cell Biol 19, 1617–1626.
    [Google Scholar]
  57. Zhang, Q., Gutsch, D. & Kenney, S. ( 1994; ). Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency. Mol Cell Biol 14, 1929–1938.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.026302-0
Loading
/content/journal/jgv/10.1099/vir.0.026302-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error