Virus evolution facilitates the emergence of viruses with unpredictable impacts on human health. This study investigated intra-host variations of the receptor-binding domain (RBD) of the haemagglutinin (HA) gene of the avian H5N1 viruses obtained from the 2004 and 2005 epidemics. The results showed that the mutation frequency of the RBD ranged from 0.3 to 0.6 %. The mutations generated one consensus and several minor populations. The consensus population of the 2004 epidemic was transmitted to the 2005 outbreak with increased frequency (39 and 45 %, respectively). Molecular dynamics simulation was applied to predict the significance of the variants. The results revealed that the consensus sequence (E218K/V248I) interacted unstably with sialic acid (SA) with an 2,6 linkage (SA2,6Gal). Although the mutated K140R/E218K/V248I and Y191C/E218K/V248I sequences decreased the HA binding capacity to 2,3-linked SA, they were shown to bind 2,6-linked SA with increased affinity. Moreover, the substitutions at aa 140 and 191 were positive-selection sites. These data suggest that the K140R and Y191C mutations may represent a step towards human adaptation of the avian H5N1 virus.


Article metrics loading...

Loading full text...

Full text loading...



  1. Auewarakul, P., Suptawiwat, O., Kongchanagul, A., Sangma, C., Suzuki, Y., Ungchusak, K., Louisirirotchanakul, S., Lerdsamran, H., Pooruk, P. & other authors(2007). An avian influenza H5N1 virus that binds to a human-type receptor. J Virol 81, 9950–9955.[CrossRef] [Google Scholar]
  2. Chakrabarti, A. K., Pawar, S. D., Cherian, S. S., Koratkar, S. S., Jadhav, S. M., Pal, B., Raut, S., Thite, V., Kode, S. S. & other authors(2009). Characterization of the influenza A H5N1 viruses of the 2008–09 outbreaks in India reveals a third introduction and possible endemicity. PLoS ONE 4, e7846.[CrossRef] [Google Scholar]
  3. Cinatl, J., Jr, Michaelis, M. & Doerr, H. W.(2007). The threat of avian influenza A (H5N1). Part I: epidemiologic concerns and virulence determinants. Med Microbiol Immunol (Berl) 196, 181–190.[CrossRef] [Google Scholar]
  4. Das, P., Li, J., Royyuru, A. K. & Zhou, R.(2009). Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity. J Comput Chem 30, 1654–1663.[CrossRef] [Google Scholar]
  5. Drake, J. W.(1999). The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes. Ann N Y Acad Sci 870, 100–107.[CrossRef] [Google Scholar]
  6. Eigen, M.(1993). Viral quasispecies. Sci Am 269, 42–49. [Google Scholar]
  7. Fujii, S., Akiyama, M., Aoki, K., Sugaya, Y., Higuchi, K., Hiraoka, M., Miki, Y., Saitoh, N., Yoshiyama, K. & other authors(1999). DNA replication errors produced by the replicative apparatus of Escherichia coli. J Mol Biol 289, 835–850.[CrossRef] [Google Scholar]
  8. Ha, Y., Stevens, D. J., Skehel, J. J. & Wiley, D. C.(2001). X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci U S A 98, 11181–11186.[CrossRef] [Google Scholar]
  9. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  10. Hensley, S. E., Das, S. R., Bailey, A. L., Schmidt, L. M., Hickman, H. D., Jayaraman, A., Viswanathan, K., Raman, R., Sasisekharan, R. & other authors(2009). Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 326, 734–736.[CrossRef] [Google Scholar]
  11. Hoelzer, K., Murcia, P. R., Baillie, G. J., Wood, J. L., Metzger, S. M., Osterrieder, N., Dubovi, E. J., Holmes, E. C. & Parrish, C. R.(2010). Intrahost evolutionary dynamics of canine influenza virus in naive and partially immune dogs. J Virol 84, 5329–5335.[CrossRef] [Google Scholar]
  12. Iqbal, M., Xiao, H., Baillie, G., Warry, A., Essen, S. C., Londt, B., Brookes, S. M., Brown, I. H. & McCauley, J. W.(2009). Within-host variation of avian influenza viruses. Philos Trans R Soc Lond B Biol Sci 364, 2739–2747.[CrossRef] [Google Scholar]
  13. Jongkon, N., Mokmak, W., Chuakheaw, D., Shaw, P. J., Tongsima, S. & Sangma, C.(2009). Prediction of avian influenza A binding preference to human receptor using conformational analysis of receptor bound to hemagglutinin. BMC Genomics 10, S24.[CrossRef] [Google Scholar]
  14. Kongchanagul, A., Suptawiwat, O., Kanrai, P., Uiprasertkul, M., Puthavathana, P. & Auewarakul, P.(2008). Positive selection at the receptor-binding site of haemagglutinin H5 in viral sequences derived from human tissues. J Gen Virol 89, 1805–1810.[CrossRef] [Google Scholar]
  15. Li, M. & Wang, B.(2006). Computational studies of H5N1 hemagglutinin binding with SAα-2,3-Gal and SA-α-2,6-Gal. Biochem Biophys Res Commun 347, 662–668.[CrossRef] [Google Scholar]
  16. Li, K. S., Guan, Y., Wang, J., Smith, G. J., Xu, K. M., Duan, L., Rahardjo, A. P., Puthavathana, P., Buranathai, C. & other authors(2004). Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209–213.[CrossRef] [Google Scholar]
  17. Matrosovich, M., Zhou, N., Kawaoka, Y. & Webster, R.(1999). The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73, 1146–1155. [Google Scholar]
  18. Murcia, P. R., Baillie, G. J., Daly, J., Elton, D., Jervis, C., Mumford, J. A., Newton, R., Parrish, C. R., Hoelzer, K. & other authors(2010). Intra- and interhost evolutionary dynamics of equine influenza virus. J Virol 84, 6943–6954.[CrossRef] [Google Scholar]
  19. Reid, A. H., Taubenberger, J. K. & Fanning, T. G.(2004). Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus. Nat Rev Microbiol 2, 909–914.[CrossRef] [Google Scholar]
  20. Roberts, J. D., Preston, B. D., Johnston, L. A., Soni, A., Loeb, L. A. & Kunkel, T. A.(1989). Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro. Mol Cell Biol 9, 469–476. [Google Scholar]
  21. Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C.(2003).swiss-model: an automated protein homology-modeling server. Nucleic Acids Res 31, 3381–3385.[CrossRef] [Google Scholar]
  22. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  23. Taubenberger, J. K. & Morens, D. M.(2006). 1918 influenza: the mother of all pandemics. Emerg Infect Dis 12, 15–22.[CrossRef] [Google Scholar]
  24. Tumpey, T. M., Maines, T. R., Van Hoeven, N., Glaser, L., Solorzano, A., Pappas, C., Cox, N. J., Swayne, D. E., Palese, P. & other authors(2007). A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315, 655–659.[CrossRef] [Google Scholar]
  25. Wan, X. F., Chen, G., Luo, F., Emch, M. & Donis, R.(2007). A quantitative genotype algorithm reflecting H5N1 avian influenza niches. Bioinformatics 23, 2368–2375.[CrossRef] [Google Scholar]
  26. Wei, C.-J., Boyington, J. C., Dai, K., Houser, K. V., Pearce, M. B., Kong, W.-P., Yang, Z.-Y., Tumpey, T. M. & Nabel, G. J.(2010). Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Sci Transl Med 2, 24ra21. [Google Scholar]
  27. Yang, Z.(1997).paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13, 555–556. [Google Scholar]
  28. Yang, Z., Wong, W. S. & Nielsen, R.(2005). Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22, 1107–1118.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error