1887

Abstract

We have previously demonstrated that the release of hepatitis E virus (HEV) from infected cells depended on ORF3 protein, which harbours one or two PSAP motifs. To elucidate the PSAP motif(s) in the ORF3 protein during virion egress, five PSAP mutants derived from an infectious genotype 3 cDNA clone of pJE03-1760F/wt that can grow efficiently in PLC/PRF/5 cells were analysed. Four mutants, including mutSAP, mutPSA, mutSA (the substituted amino acids in the authentic PSAP motif are underlined) and mutPAP/PSAP (the changed amino acid in the additional PSAP motif is underlined) generated progenies as efficiently as the wild-type virus. Conversely, the HEV RNA level in the culture supernatant of mutPAP/SA RNA-transfected cells was significantly lower than in cells transfected with the wild-type RNA, similar to an ORF3-null mutant. Consistent with the ORF3-deficient mutant, the mutPAP/SA mutant with no intact PSAP motifs banded at 1.26–1.27 g ml in sucrose, and was captured by anti-ORF2, but not by anti-ORF3, with or without prior treatment with detergent (0.1 % sodium deoxycholate). The absence of the ORF3 protein on the mutant particles in the culture supernatant was confirmed by Western blotting, despite the expression of ORF3 protein in the RNA-transfected cells, as detected by immunofluorescence and Western blotting. Therefore, at least one of the two intact PSAP motifs in the ORF3 protein is required for the formation of membrane-associated HEV particles possessing ORF3 proteins on their surface, thus suggesting that the PSAP motif plays a role as a functional domain for HEV budding.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.025791-0
2011-02-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/2/269.html?itemId=/content/journal/jgv/10.1099/vir.0.025791-0&mimeType=html&fmt=ahah

References

  1. Agrawal, S., Gupta, D. & Panda, S. K. ( 2001; ). The 3′ end of hepatitis E virus (HEV) genome binds specifically to the viral RNA-dependent RNA polymerase (RdRp). Virology 282, 87–101.[CrossRef]
    [Google Scholar]
  2. Bilic, I., Jaskulska, B., Basic, A., Morrow, C. J. & Hess, M. ( 2009; ). Sequence analysis and comparison of avian hepatitis E viruses from Australia and Europe indicate the existence of different genotypes. J Gen Virol 90, 863–873.[CrossRef]
    [Google Scholar]
  3. Bouamr, F., Melillo, J. A., Wang, M. Q., Nagashima, K., de Los Santos, M., Rein, A. & Goff, S. P. ( 2003; ). PPPYVEPTAP motif is the late domain of human T-cell leukemia virus type 1 Gag and mediates its functional interaction with cellular proteins Nedd4 and Tsg101. J Virol 77, 11882–11895.[CrossRef]
    [Google Scholar]
  4. Chandra, V., Kar-Roy, A., Kumari, S., Mayor, S. & Jameel, S. ( 2008; ). The hepatitis E virus ORF3 protein modulates epidermal growth factor receptor trafficking, STAT3 translocation, and acute-phase response. J Virol 82, 7100–7110.[CrossRef]
    [Google Scholar]
  5. Ciancanelli, M. J. & Basler, C. F. ( 2006; ). Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 80, 12070–12078.[CrossRef]
    [Google Scholar]
  6. Emerson, S. U. & Purcell, R. H. ( 2006; ). Hepatitis E virus. In Fields Virology, 5th edn, pp. 3047–3058. Edited by Knipe, D. M., Howley, P. M., Griffin, D. E., Lamb, R. A., Martin, M. A., Roizman, B. & Straus, S. E.. Philadelphia. : Lippincott, Williams & Wilkins.
    [Google Scholar]
  7. Emerson, S. U., Nguyen, H. T., Torian, U., Burke, D., Engle, R. & Purcell, R. H. ( 2010; ). Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on ORF3 protein and requires an intact PXXP motif. J Virol 84, 9059–9069.[CrossRef]
    [Google Scholar]
  8. Garrus, J. E., von Schwedler, U. K., Pornillos, O. W., Morham, S. G., Zavitz, K. H., Wang, H. E., Wettstein, D. A., Stray, K. M., Côté, M. & other authors ( 2001; ). Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65.[CrossRef]
    [Google Scholar]
  9. Göttlinger, H. G., Dorfman, T., Sodroski, J. G. & Haseltine, W. A. ( 1991; ). Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A 88, 3195–3199.[CrossRef]
    [Google Scholar]
  10. Graff, J., Torian, U., Nguyen, H. & Emerson, S. U. ( 2006; ). A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus. J Virol 80, 5919–5926.[CrossRef]
    [Google Scholar]
  11. Harrison, T. J. ( 1999; ). Hepatitis E virus – an update. Liver 19, 171–176.
    [Google Scholar]
  12. Harty, R. N., Paragas, J., Sudol, M. & Palese, P. ( 1999; ). A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J Virol 73, 2921–2929.
    [Google Scholar]
  13. Harty, R. N., Brown, M. E., Wang, G., Huibregtse, J. & Hayes, F. P. ( 2000; ). A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc Natl Acad Sci U S A 97, 13871–13876.[CrossRef]
    [Google Scholar]
  14. Kabrane-Lazizi, Y., Meng, X. J., Purcell, R. H. & Emerson, S. U. ( 1999; ). Evidence that the genomic RNA of hepatitis E virus is capped. J Virol 73, 8848–8850.
    [Google Scholar]
  15. Koonin, E. V., Gorbalenya, A. E., Purdy, M. A., Rozanov, M. N., Reyes, G. R. & Bradley, D. W. ( 1992; ). Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. Proc Natl Acad Sci U S A 89, 8259–8263.[CrossRef]
    [Google Scholar]
  16. Lorenzo, F. R., Tanaka, T., Takahashi, H., Ichiyama, K., Hoshino, Y., Yamada, K., Inoue, J., Takahashi, M. & Okamoto, H. ( 2008; ). Mutational events during the primary propagation and consecutive passages of hepatitis E virus strain JE03–1760F in cell culture. Virus Res 137, 86–96.[CrossRef]
    [Google Scholar]
  17. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. ( 2001; ). HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 7, 1313–1319.[CrossRef]
    [Google Scholar]
  18. Meng, X. J. ( 2010; ). Recent advances in hepatitis E virus. J Viral Hepat 17, 153–161.[CrossRef]
    [Google Scholar]
  19. Okamoto, H. ( 2007; ). Genetic variability and evolution of hepatitis E virus. Virus Res 127, 216–228.[CrossRef]
    [Google Scholar]
  20. Okamoto, H., Imai, M., Usuda, S., Tanaka, E., Tachibana, K., Mishiro, S., Machida, A., Nakamura, T., Miyakawa, Y. & other authors ( 1985; ). Hemagglutination assay of polypeptide coded by the pre-S region of hepatitis B virus DNA with monoclonal antibody: correlation of pre-S polypeptide with the receptor for polymerized human serum albumin in serums containing hepatitis B antigens. J Immunol 134, 1212–1216.
    [Google Scholar]
  21. Okamoto, H., Takahashi, M. & Nishizawa, T. ( 2003; ). Features of hepatitis E virus infection in Japan. Intern Med 42, 1065–1071.[CrossRef]
    [Google Scholar]
  22. Sasaki, J., Kusuhara, Y., Maeno, Y., Kobayashi, N., Yamashita, T., Sakae, K., Takeda, N. & Taniguchi, K. ( 2001; ). Construction of an infectious cDNA clone of Aichi virus (a new member of the family Picornaviridae) and mutational analysis of a stem-loop structure at the 5′ end of the genome. J Virol 75, 8021–8030.[CrossRef]
    [Google Scholar]
  23. Surjit, M., Oberoi, R., Kumar, R. & Lal, S. K. ( 2006; ). Enhanced α1 microglobulin secretion from hepatitis E virus ORF3-expressing human hepatoma cells is mediated by tumor susceptibility gene 101. J Biol Chem 281, 8135–8142.[CrossRef]
    [Google Scholar]
  24. Takahashi, M., Tanaka, T., Azuma, M., Kusano, E., Aikawa, T., Shibayama, T., Yazaki, Y., Mizuo, H., Inoue, J. & other authors ( 2007; ). Prolonged fecal shedding of hepatitis E virus (HEV) during sporadic acute hepatitis E: evaluation of infectivity of HEV in fecal specimens in a cell culture system. J Clin Microbiol 45, 3671–3679.[CrossRef]
    [Google Scholar]
  25. Takahashi, M., Hoshino, Y., Tanaka, T., Takahashi, H., Nishizawa, T. & Okamoto, H. ( 2008a; ). Production of monoclonal antibodies against hepatitis E virus capsid protein and evaluation of their neutralizing activity in a cell culture system. Arch Virol 153, 657–666.[CrossRef]
    [Google Scholar]
  26. Takahashi, M., Yamada, K., Hoshino, Y., Takahashi, H., Ichiyama, K., Tanaka, T. & Okamoto, H. ( 2008b; ). Monoclonal antibodies raised against the ORF3 protein of hepatitis E virus (HEV) can capture HEV particles in culture supernatant and serum but not those in feces. Arch Virol 153, 1703–1713.[CrossRef]
    [Google Scholar]
  27. Takahashi, M., Tanaka, T., Takahashi, H., Hoshino, Y., Nagashima, S., Jirintai, Mizuo, H., Yazaki, Y., Takagi, T. & other authors ( 2010; ). Hepatitis E virus (HEV) strains in serum samples can replicate efficiently in cultured cells despite the coexistence of HEV antibodies: characterization of HEV virions in blood circulation. J Clin Microbiol 48, 1112–1125.[CrossRef]
    [Google Scholar]
  28. Tam, A. W., Smith, M. M., Guerra, M. E., Huang, C. C., Bradley, D. W., Fry, K. E. & Reyes, G. R. ( 1991; ). Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. Virology 185, 120–131.[CrossRef]
    [Google Scholar]
  29. Tanaka, T., Takahashi, M., Kusano, E. & Okamoto, H. ( 2007; ). Development and evaluation of an efficient cell-culture system for hepatitis E virus. J Gen Virol 88, 903–911.[CrossRef]
    [Google Scholar]
  30. Tanaka, T., Takahashi, M., Takahashi, H., Ichiyama, K., Hoshino, Y., Nagashima, S., Mizuo, H. & Okamoto, H. ( 2009; ). Development and characterization of a genotype 4 hepatitis E virus cell culture system using a HE-JF5/15F strain recovered from a fulminant hepatitis patient. J Clin Microbiol 47, 1906–1910.[CrossRef]
    [Google Scholar]
  31. Wirblich, C., Bhattacharya, B. & Roy, P. ( 2006; ). Nonstructural protein 3 of bluetongue virus assists virus release by recruiting ESCRT-I protein Tsg101. J Virol 80, 460–473.[CrossRef]
    [Google Scholar]
  32. Worm, H. C., van der Poel, W. H. & Brandstatter, G. ( 2002; ). Hepatitis E: an overview. Microbes Infect 4, 657–666.[CrossRef]
    [Google Scholar]
  33. Yamada, K., Takahashi, M., Hoshino, Y., Takahashi, H., Ichiyama, K., Nagashima, S., Tanaka, T. & Okamoto, H. ( 2009a; ). ORF3 protein of hepatitis E virus is essential for virion release from infected cells. J Gen Virol 90, 1880–1891.[CrossRef]
    [Google Scholar]
  34. Yamada, K., Takahashi, M., Hoshino, Y., Takahashi, H., Ichiyama, K., Tanaka, T. & Okamoto, H. ( 2009b; ). Construction of an infectious cDNA clone of hepatitis E virus strain JE03–1760F that can propagate efficiently in cultured cells. J Gen Virol 90, 457–462.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.025791-0
Loading
/content/journal/jgv/10.1099/vir.0.025791-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 269 - 278

Primer sequences used in this study [PDF](37 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error