1887

Abstract

The US3 protein kinase is conserved over the alphaherpesvirus subfamily. Increasing evidence shows that, although the kinase is generally not required for virus replication in cell culture, it plays a pivotal and in some cases an essential role in virus virulence . The US3 protein is a multifunctional serine/threonine kinase that is involved in viral gene expression, virion morphogenesis, remodelling the actin cytoskeleton and the evasion of several antiviral host responses. In the current review, both the well conserved and virus-specific functions of alphaherpesvirus US3 protein kinase orthologues will be discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.025593-0
2011-01-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/1/18.html?itemId=/content/journal/jgv/10.1099/vir.0.025593-0&mimeType=html&fmt=ahah

References

  1. Abendroth, A., Lin, I., Slobedman, B., Ploegh, H. & Arvin, A. M. ( 2001; ). Varicella-zoster virus retains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J Virol 75, 4878–4888.[CrossRef]
    [Google Scholar]
  2. Asano, S., Honda, T., Goshima, F., Watanabe, D., Miyake, Y., Sugiura, Y. & Nishiyama, Y. ( 1999; ). US3 protein kinase of herpes simplex virus type 2 plays a role in protecting corneal epithelial cells from apoptosis in infected mice. J Gen Virol 80, 51–56.
    [Google Scholar]
  3. Asano, S., Honda, T., Goshima, F., Nishiyama, Y. & Sugiura, Y. ( 2000; ). US3 protein kinase of herpes simplex virus protects primary afferent neurons from virus-induced apoptosis in ICR mice. Neurosci Lett 294, 105–108.[CrossRef]
    [Google Scholar]
  4. Benetti, L. & Roizman, B. ( 2004; ). Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis. Proc Natl Acad Sci U S A 101, 9411–9416.[CrossRef]
    [Google Scholar]
  5. Benetti, L. & Roizman, B. ( 2007; ). In transduced cells, the US3 protein kinase of herpes simplex virus 1 precludes activation and induction of apoptosis by transfected procaspase 3. J Virol 81, 10242–10248.[CrossRef]
    [Google Scholar]
  6. Benetti, L., Munger, J. & Roizman, B. ( 2003; ). The herpes simplex virus 1 US3 protein kinase blocks caspase-dependent double cleavage and activation of the proapoptotic protein BAD. J Virol 77, 6567–6573.[CrossRef]
    [Google Scholar]
  7. Brukman, A. & Enquist, L. W. ( 2006; ). Suppression of the interferon-mediated innate immune response by pseudorabies virus. J Virol 80, 6345–6356.[CrossRef]
    [Google Scholar]
  8. Brzozowska, A., Rychlowski, M., Lipinska, A. D. & Bienkowska-Szewczyk, K. ( 2010; ). Point mutations in BHV-1 Us3 gene abolish its ability to induce cytoskeletal changes in various cell types. Vet Microbiol 143, 8–13.[CrossRef]
    [Google Scholar]
  9. Calton, C. M., Randall, J. A., Adkins, M. W. & Banfield, B. W. ( 2004; ). The pseudorabies virus serine/threonine kinase Us3 contains mitochondrial, nuclear and membrane localization signals. Virus Genes 29, 131–145.[CrossRef]
    [Google Scholar]
  10. Cartier, A., Komai, T. & Masucci, M. G. ( 2003a; ). The Us3 protein kinase of herpes simplex virus 1 blocks apoptosis and induces phosporylation of the Bcl-2 family member Bad. Exp Cell Res 291, 242–250.[CrossRef]
    [Google Scholar]
  11. Cartier, A., Broberg, E., Komai, T., Henriksson, M. & Masucci, M. G. ( 2003b; ). The herpes simplex virus-1 Us3 protein kinase blocks CD8 T cell lysis by preventing the cleavage of Bid by granzyme B. Cell Death Differ 10, 1320–1328.[CrossRef]
    [Google Scholar]
  12. Coller, K. E. & Smith, G. A. ( 2008; ). Two viral kinases are required for sustained long distance axon transport of a neuroinvasive herpesvirus. Traffic 9, 1458–1470.[CrossRef]
    [Google Scholar]
  13. Daikoku, T., Yamashita, Y., Tsurumi, T., Maeno, K. & Nishiyama, Y. ( 1993; ). Purification and biochemical characterization of the protein kinase encoded by the US3 gene of herpes simplex virus type 2. Virology 197, 685–694.[CrossRef]
    [Google Scholar]
  14. Danaher, R. J., Jacob, R. J., Steiner, M. R., Allen, W. R., Hill, J. M. & Miller, C. S. ( 2005; ). Histone deacetylase inhibitors induce reactivation of herpes simplex virus type 1 in a latency-associated transcript-independent manner in neuronal cells. J Neurovirol 11, 306–317.[CrossRef]
    [Google Scholar]
  15. Datta, S. R., Ranger, A. M., Lin, M. Z., Sturgill, J. F., Ma, Y. C., Cowan, C. W., Dikkes, P., Korsmeyer, S. J. & Greenberg, M. E. ( 2002; ). Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell 3, 631–643.[CrossRef]
    [Google Scholar]
  16. Demmin, G. L., Clase, A. C., Randall, J. A., Enquist, L. W. & Banfield, B. W. ( 2001; ). Insertions in the gG gene of pseudorabies virus reduce expression of the upstream Us3 protein and inhibit cell-to-cell spread of virus infection. J Virol 75, 10856–10869.[CrossRef]
    [Google Scholar]
  17. Deruelle, M., Geenen, K., Nauwynck, H. J. & Favoreel, H. W. ( 2007; ). A point mutation in the putative ATP binding site of the pseudorabies virus US3 protein kinase prevents Bad phosphorylation and cell survival following apoptosis induction. Virus Res 128, 65–70.[CrossRef]
    [Google Scholar]
  18. Deruelle, M. J., Van den Broeke, C., Nauwynck, H. J., Mettenleiter, T. C. & Favoreel, H. W. ( 2009; ). Pseudorabies virus US3- and UL49.5-dependent and -independent downregulation of MHC I cell surface expression in different cell types. Virology 395, 172–181.[CrossRef]
    [Google Scholar]
  19. Deruelle, M. J., De Corte, N., Englebienne, J., Nauwynck, H. J. & Favoreel, H. W. ( 2010; ). Pseudorabies virus US3-mediated inhibition of apoptosis does not affect infectious virus production. J Gen Virol 91, 1127–1132.[CrossRef]
    [Google Scholar]
  20. Eisfeld, A. J., Turse, S. E., Jackson, S. A., Lerner, E. C. & Kinchington, P. R. ( 2006; ). Phosphorylation of the varicella-zoster virus (VZV) major transcriptional regulatory protein IE62 by the VZV open reading frame 66 protein kinase. J Virol 80, 1710–1723.[CrossRef]
    [Google Scholar]
  21. Eisfeld, A. J., Yee, M. B., Erazo, A., Abendroth, A. & Kinchington, P. R. ( 2007; ). Downregulation of class I major histocompatibility complex surface expression by varicella-zoster virus involves open reading frame 66 protein kinase-dependent and -independent mechanisms. J Virol 81, 9034–9049.[CrossRef]
    [Google Scholar]
  22. Erazo, A., Yee, M. B., Osterrieder, N. & Kinchington, P. R. ( 2008; ). Varicella-zoster virus open reading frame 66 protein kinase is required for efficient viral growth in primary human corneal stromal fibroblast cells. J Virol 82, 7653–7665.[CrossRef]
    [Google Scholar]
  23. Farnsworth, A., Wisner, T. W., Webb, M., Roller, R., Cohen, G., Eisenberg, R. & Johnson, D. C. ( 2007; ). Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane. Proc Natl Acad Sci U S A 104, 10187–10192.[CrossRef]
    [Google Scholar]
  24. Favoreel, H. W., Nauwynck, H. J., Halewyck, H. M., Van Oostveldt, P., Mettenleiter, T. C. & Pensaert, M. B. ( 1999; ). Antibody-induced endocytosis of viral glycoproteins and major histocompatibility complex class I on pseudorabies virus-infected monocytes. J Gen Virol 80, 1283–1291.
    [Google Scholar]
  25. Favoreel, H. W., Van Minnebruggen, G., Nauwynck, H. J., Enquist, L. W. & Pensaert, M. B. ( 2002; ). A tyrosine-based motif in the cytoplasmic tail of pseudorabies virus glycoprotein B is important for both antibody-induced internalization of viral glycoproteins and efficient cell-to-cell spread. J Virol 76, 6845–6851.[CrossRef]
    [Google Scholar]
  26. Favoreel, H. W., Van Minnebruggen, G., Adriaensen, D. & Nauwynck, H. J. ( 2005; ). Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread. Proc Natl Acad Sci U S A 102, 8990–8995.[CrossRef]
    [Google Scholar]
  27. Finnen, R. L., Roy, B. B., Zhang, H. & Banfield, B. W. ( 2010; ). Analysis of filamentous process induction and nuclear localization properties of the HSV-2 serine/threonine kinase Us3. Virology 397, 23–33.[CrossRef]
    [Google Scholar]
  28. Frame, M. C., Purves, F. C., McGeoch, D. J., Marsden, H. S. & Leader, D. P. ( 1987; ). Identification of the herpes simplex virus protein kinase as the product of viral gene US3. J Gen Virol 68, 2699–2704.[CrossRef]
    [Google Scholar]
  29. Gallinari, P., Di Marco, S., Jones, P., Pallaoro, M. & Steinkühler, C. ( 2007; ). HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 17, 195–211.
    [Google Scholar]
  30. Geenen, K., Favoreel, H. W., Olsen, L., Enquist, L. W. & Nauwynck, H. J. ( 2005; ). The pseudorabies virus US3 protein kinase possesses anti-apoptotic activity that protects cells from apoptosis during infection and after treatment with sorbitol or staurosporine. Virology 331, 144–150.[CrossRef]
    [Google Scholar]
  31. Grassi, G., Maccaroni, P., Meyer, R., Kaiser, H., D'Ambrosio, E., Pascale, E., Grassi, M., Kuhn, A., Di Nardo, P. & other authors ( 2003; ). Inhibitors of DNA methylation and histone deacetylation activate cytomegalovirus promoter-controlled reporter gene expression in human glioblastoma cell line U87. Carcinogenesis 24, 1625–1635.[CrossRef]
    [Google Scholar]
  32. Grozinger, C. M. & Schreiber, S. L. ( 2002; ). Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9, 3–16.[CrossRef]
    [Google Scholar]
  33. Gwack, Y., Byun, H., Hwang, S., Lim, C. & Choe, J. ( 2001; ). CREB-binding protein and histone deacetylase regulate the transcriptional activity of Kaposi's sarcoma-associated herpesvirus open reading frame 50. J Virol 75, 1909–1917.[CrossRef]
    [Google Scholar]
  34. Hanks, S. K., Quinn, A. M. & Hunter, T. ( 1988; ). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52.[CrossRef]
    [Google Scholar]
  35. Hata, S., Koyama, A. H., Shiota, H., Adachi, A., Goshima, F. & Nishiyama, Y. ( 1999; ). Antiapoptotic activity of herpes simplex virus type 2: the role of US3 protein kinase gene. Microbes Infect 1, 601–607.[CrossRef]
    [Google Scholar]
  36. Heineman, T. C., Seidel, K. & Cohen, J. I. ( 1996; ). The varicella-zoster virus ORF66 protein induces kinase activity and is dispensable for viral replication. J Virol 70, 7312–7317.
    [Google Scholar]
  37. Hobbs, W. E., II & DeLuca, N. A. ( 1999; ). Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0. J Virol 73, 8245–8255.
    [Google Scholar]
  38. Hofmann, C., Shepelev, M. & Chernoff, J. ( 2004; ). The genetics of Pak. J Cell Sci 117, 4343–4354.[CrossRef]
    [Google Scholar]
  39. Imai, T., Sagou, K., Arii, J. & Kawaguchi, Y. ( 2010; ). Effects of phosphorylation of herpes simplex virus 1 envelope glycoprotein B by Us3 kinase in vivo and in vitro. J Virol 84, 153–162.[CrossRef]
    [Google Scholar]
  40. Inagaki-Ohara, K., Iwasaki, T., Watanabe, D., Kurata, T. & Nishiyama, Y. ( 2001; ). Effect of the deletion of US2 and US3 from herpes simplex virus type 2 on immune responses in the murine vagina following intravaginal infection. Vaccine 20, 98–104.[CrossRef]
    [Google Scholar]
  41. Jerome, K. R., Fox, R., Chen, Z., Sears, A. E., Lee, H. & Corey, L. ( 1999; ). Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol 73, 8950–8957.
    [Google Scholar]
  42. Kato, A., Yamamoto, M., Ohno, T., Kodaira, H., Nishiyama, Y. & Kawaguchi, Y. ( 2005; ). Identification of proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1. J Virol 79, 9325–9331.[CrossRef]
    [Google Scholar]
  43. Kato, A., Yamamoto, M., Ohno, T., Tanaka, M., Sata, T., Nishiyama, Y. & Kawaguchi, Y. ( 2006; ). Herpes simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and regulates nuclear localization of viral envelopment factors UL34 and UL31. J Virol 80, 1476–1486.[CrossRef]
    [Google Scholar]
  44. Kato, A., Arii, J., Shiratori, I., Akashi, H., Arase, H. & Kawaguchi, Y. ( 2009; ). Herpes simplex virus 1 protein kinase Us3 phosphorylates viral envelope glycoprotein B and regulates its expression on the cell surface. J Virol 83, 250–261.[CrossRef]
    [Google Scholar]
  45. Kimman, T. G., De Wind, N., De Bruin, T., de Visser, Y. & Voermans, J. ( 1994; ). Inactivation of glycoprotein gE and thymidine kinase or the US3-encoded protein kinase synergistically decreases in vivo replication of pseudorabies virus and the induction of protective immunity. Virology 205, 511–518.[CrossRef]
    [Google Scholar]
  46. Kinchington, P. R., Fite, K. & Turse, S. E. ( 2000; ). Nuclear accumulation of IE62, the varicella-zoster virus (VZV) major transcriptional regulatory protein, is inhibited by phosphorylation mediated by the VZV open reading frame 66 protein kinase. J Virol 74, 2265–2277.[CrossRef]
    [Google Scholar]
  47. Kinchington, P. R., Fite, K., Seman, A. & Turse, S. E. ( 2001; ). Virion association of IE62, the varicella-zoster virus (VZV) major transcriptional regulatory protein, requires expression of the VZV open reading frame 66 protein kinase. J Virol 75, 9106–9113.[CrossRef]
    [Google Scholar]
  48. Klupp, B. G., Granzow, H. & Mettenleiter, T. C. ( 2001; ). Effect of the pseudorabies virus US3 protein on nuclear membrane localization of the UL34 protein and virus egress from the nucleus. J Gen Virol 82, 2363–2371.
    [Google Scholar]
  49. Koppers-Lalic, D., Reits, E. A., Ressing, M. E., Lipinska, A. D., Abele, R., Koch, J., Marcondes Rezende, M., Admiraal, P., van Leeuwen, D. & other authors ( 2005; ). Varicelloviruses avoid T cell recognition by UL49.5-mediated inactivation of the transporter associated with antigen processing. Proc Natl Acad Sci U S A 102, 5144–5149.[CrossRef]
    [Google Scholar]
  50. Koppers-Lalic, D., Verweij, M. C., Lipinska, A. D., Wang, Y., Quinten, E., Reits, E. A., Koch, J., Loch, S., Marcondes Rezende, M. & other authors ( 2008; ). Varicellovirus UL49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP. PLoS Pathog 4, e1000080.[CrossRef]
    [Google Scholar]
  51. Koyama, A. H., Fukumori, T., Fujita, M., Irie, H. & Adachi, A. ( 2000; ). Physiological significance of apoptosis in animal virus infection. Microbes Infect 2, 1111–1117.[CrossRef]
    [Google Scholar]
  52. Leach, N., Bjerke, S. L., Christensen, D. K., Bouchard, J. M., Mou, F., Park, R., Baines, J., Haraguchi, T. & Roller, R. J. ( 2007; ). Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both UL34 and US3. J Virol 81, 10792–10803.[CrossRef]
    [Google Scholar]
  53. Leader, D. P. ( 1993; ). Viral protein kinases and protein phosphatases. Pharmacol Ther 59, 343–389.[CrossRef]
    [Google Scholar]
  54. Leader, D. P., Deana, A. D., Marchiori, F., Purves, F. C. & Pinna, L. A. ( 1991; ). Further definition of the substrate specificity of the alpha-herpesvirus protein kinase and comparison with protein kinases A and C. Biochim Biophys Acta 1091, 426–431.[CrossRef]
    [Google Scholar]
  55. Leopardi, R., Van Sant, C. & Roizman, B. ( 1997; ). The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proc Natl Acad Sci U S A 94, 7891–7896.[CrossRef]
    [Google Scholar]
  56. Liang, L. & Roizman, B. ( 2008; ). Expression of gamma interferon-dependent genes is blocked independently by virion host shutoff RNase and by US3 protein kinase. J Virol 82, 4688–4696.[CrossRef]
    [Google Scholar]
  57. Lilley, B. N. & Ploegh, H. L. ( 2005; ). Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. Immunol Rev 207, 126–144.[CrossRef]
    [Google Scholar]
  58. Loch, S. & Tampe, R. ( 2005; ). Viral evasion of the MHC class I antigen-processing machinery. Pflugers Arch 451, 409–417.[CrossRef]
    [Google Scholar]
  59. Lu, F., Zhou, J., Wiedmer, A., Madden, K., Yuan, Y. & Lieberman, P. M. ( 2003; ). Chromatin remodeling of the Kaposi's sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol 77, 11425–11435.[CrossRef]
    [Google Scholar]
  60. Lyman, M. G., Demmin, G. L. & Banfield, B. W. ( 2003; ). The attenuated pseudorabies virus strain Bartha fails to package the tegument proteins Us3 and VP22. J Virol 77, 1403–1414.[CrossRef]
    [Google Scholar]
  61. McGeoch, D. J. & Davison, A. J. ( 1986; ). Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucleic Acids Res 14, 1765–1777.[CrossRef]
    [Google Scholar]
  62. Meignier, B., Longnecker, R., Mavromara-Nazos, P., Sears, A. E. & Roizman, B. ( 1988; ). Virulence of and establishment of latency by genetically engineered deletion mutants of herpes simplex virus 1. Virology 162, 251–254.[CrossRef]
    [Google Scholar]
  63. Merezak, C., Reichert, M., Van Lint, C., Kerkhofs, P., Portetelle, D., Willems, L. & Kettmann, R. ( 2002; ). Inhibition of histone deacetylases induces bovine leukemia virus expression in vitro and in vivo. J Virol 76, 5034–5042.[CrossRef]
    [Google Scholar]
  64. Mettenleiter, T. C. ( 2002; ). Herpesvirus assembly and egress. J Virol 76, 1537–1547.[CrossRef]
    [Google Scholar]
  65. Mettenleiter, T. C., Klupp, B. G. & Granzow, H. ( 2009; ). Herpesvirus assembly: an update. Virus Res 143, 222–234.[CrossRef]
    [Google Scholar]
  66. Moffat, J. F., Zerboni, L., Sommer, M. H., Heineman, T. C., Cohen, J. I., Kaneshima, H. & Arvin, A. M. ( 1998; ). The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse. Proc Natl Acad Sci U S A 95, 11969–11974.[CrossRef]
    [Google Scholar]
  67. Morris, J. B., Hofemeister, H. & O'Hare, P. ( 2007; ). Herpes simplex virus infection induces phosphorylation and delocalization of emerin, a key inner nuclear membrane protein. J Virol 81, 4429–4437.[CrossRef]
    [Google Scholar]
  68. Mou, F., Forest, T. & Baines, J. D. ( 2007; ). US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells. J Virol 81, 6459–6470.[CrossRef]
    [Google Scholar]
  69. Mou, F., Wills, E. & Baines, J. D. ( 2009; ). Phosphorylation of the UL31 protein of herpes simplex virus 1 by the US3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids. J Virol 83, 5181–5191.[CrossRef]
    [Google Scholar]
  70. Munger, J. & Roizman, B. ( 2001; ). The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci U S A 98, 10410–10415.[CrossRef]
    [Google Scholar]
  71. Munger, J., Chee, A. V. & Roizman, B. ( 2001; ). The US3 protein kinase blocks apoptosis induced by the d120 mutant of herpes simplex virus 1 at a premitochondrial stage. J Virol 75, 5491–5497.[CrossRef]
    [Google Scholar]
  72. Murata, T., Goshima, F., Daikoku, T., Takakuwa, H. & Nishiyama, Y. ( 2000; ). Expression of herpes simplex virus type 2 US3 affects the Cdc42/Rac pathway and attenuates c-Jun N-terminal kinase activation. Genes Cells 5, 1017–1027.[CrossRef]
    [Google Scholar]
  73. Murata, T., Goshima, F., Yamauchi, Y., Koshizuka, T., Takakuwa, H. & Nishiyama, Y. ( 2002; ). Herpes simplex virus type 2 US3 blocks apoptosis induced by sorbitol treatment. Microbes Infect 4, 707–712.[CrossRef]
    [Google Scholar]
  74. Nakamichi, K., Kuroki, D., Matsumoto, Y. & Otsuka, H. ( 2001; ). Bovine herpesvirus 1 glycoprotein G is required for prevention of apoptosis and efficient viral growth in rabbit kidney cells. Virology 279, 488–498.[CrossRef]
    [Google Scholar]
  75. Nishiyama, Y., Yamada, Y., Kurachi, R. & Daikoku, T. ( 1992; ). Construction of a US3 lacZ insertion mutant of herpes simplex virus type 2 and characterization of its phenotype in vitro and in vivo. Virology 190, 256–268.[CrossRef]
    [Google Scholar]
  76. Ogg, P. D., McDonell, P. J., Ryckman, B. J., Knudson, C. M. & Roller, R. J. ( 2004; ). The HSV-1 Us3 protein kinase is sufficient to block apoptosis induced by overexpression of a variety of Bcl-2 family members. Virology 319, 212–224.[CrossRef]
    [Google Scholar]
  77. Peri, P., Mattila, R. K., Kantola, H., Broberg, E., Karttunen, H. S., Waris, M., Vuorinen, T. & Hukkanen, V. ( 2008; ). Herpes simplex virus type 1 Us3 gene deletion influences toll-like receptor responses in cultured monocytic cells. Virol J 5, 140.[CrossRef]
    [Google Scholar]
  78. Piroozmand, A., Koyama, A. H., Shimada, Y., Fujita, M., Arakawa, T. & Adachi, A. ( 2004; ). Role of Us3 gene of herpes simplex virus type 1 for resistance to interferon. Int J Mol Med 14, 641–645.
    [Google Scholar]
  79. Pomeranz, L. E., Reynolds, A. E. & Hengartner, C. J. ( 2005; ). Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69, 462–500.[CrossRef]
    [Google Scholar]
  80. Poon, A. P. & Roizman, B. ( 2005; ). Herpes simplex virus 1 ICP22 regulates the accumulation of a shorter mRNA and of a truncated US3 protein kinase that exhibits altered functions. J Virol 79, 8470–8479.[CrossRef]
    [Google Scholar]
  81. Poon, A. P., Liang, Y. & Roizman, B. ( 2003; ). Herpes simplex virus 1 gene expression is accelerated by inhibitors of histone deacetylases in rabbit skin cells infected with a mutant carrying a cDNA copy of the infected-cell protein no. 0. J Virol 77, 12671–12678.[CrossRef]
    [Google Scholar]
  82. Poon, A. P., Gu, H. & Roizman, B. ( 2006a; ). ICP0 and the US3 protein kinase of herpes simplex virus 1 independently block histone deacetylation to enable gene expression. Proc Natl Acad Sci U S A 103, 9993–9998.[CrossRef]
    [Google Scholar]
  83. Poon, A. P., Benetti, L. & Roizman, B. ( 2006b; ). US3 and US3.5 protein kinases of herpes simplex virus 1 differ with respect to their functions in blocking apoptosis and in virion maturation and egress. J Virol 80, 3752–3764.[CrossRef]
    [Google Scholar]
  84. Purves, F. C., Deana, A. D., Marchiori, F., Leader, D. P. & Pinna, L. A. ( 1986; ). The substrate specificity of the protein kinase induced in cells infected with herpesviruses: studies with synthetic substrates [corrected] indicate structural requirements distinct from other protein kinases. Biochim Biophys Acta 889, 208–215.[CrossRef]
    [Google Scholar]
  85. Purves, F. C., Longnecker, R. M., Leader, D. P. & Roizman, B. ( 1987; ). Herpes simplex virus 1 protein kinase is encoded by open reading frame US3 which is not essential for virus growth in cell culture. J Virol 61, 2896–2901.
    [Google Scholar]
  86. Purves, F. C., Spector, D. & Roizman, B. ( 1991; ). The herpes simplex virus 1 protein kinase encoded by the US3 gene mediates posttranslational modification of the phosphoprotein encoded by the UL34 gene. J Virol 65, 5757–5764.
    [Google Scholar]
  87. Purves, F. C., Spector, D. & Roizman, B. ( 1992; ). UL34, the target of the herpes simplex virus US3 protein kinase, is a membrane protein which in its unphosphorylated state associates with novel phosphoproteins. J Virol 66, 4295–4303.
    [Google Scholar]
  88. Purves, F. C., Ogle, W. O. & Roizman, B. ( 1993; ). Processing of the herpes simplex virus regulatory protein α22 mediated by the UL13 protein kinase determines the accumulation of a subset of α and γ mRNAs and proteins in infected cells. Proc Natl Acad Sci U S A 90, 6701–6705.[CrossRef]
    [Google Scholar]
  89. Reynolds, A. E., Ryckman, B. J., Baines, J. D., Zhou, Y., Liang, L. & Roller, R. J. ( 2001; ). UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 75, 8803–8817.[CrossRef]
    [Google Scholar]
  90. Reynolds, A. E., Wills, E. G., Roller, R. J., Ryckman, B. J. & Baines, J. D. ( 2002; ). Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 76, 8939–8952.[CrossRef]
    [Google Scholar]
  91. Ryckman, B. J. & Roller, R. J. ( 2004; ). Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3–UL34 catalytic relationship. J Virol 78, 399–412.[CrossRef]
    [Google Scholar]
  92. Sagou, K., Imai, T., Sagara, H., Uema, M. & Kawaguchi, Y. ( 2009; ). Regulation of the catalytic activity of herpes simplex virus 1 protein kinase Us3 by autophosphorylation and its role in pathogenesis. J Virol 83, 5773–5783.[CrossRef]
    [Google Scholar]
  93. Schaap, A., Fortin, J. F., Sommer, M., Zerboni, L., Stamatis, S., Ku, C. C., Nolan, G. P. & Arvin, A. M. ( 2005; ). T-cell tropism and the role of ORF66 protein in pathogenesis of varicella-zoster virus infection. J Virol 79, 12921–12933.[CrossRef]
    [Google Scholar]
  94. Schaap-Nutt, A., Sommer, M., Che, X., Zerboni, L. & Arvin, A. M. ( 2006; ). ORF66 protein kinase function is required for T-cell tropism of varicella-zoster virus in vivo. J Virol 80, 11806–11816.[CrossRef]
    [Google Scholar]
  95. Schumacher, D., Tischer, B. K., Trapp, S. & Osterrieder, N. ( 2005; ). The protein encoded by the US3 orthologue of Marek's disease virus is required for efficient de-envelopment of perinuclear virions and involved in actin stress fiber breakdown. J Virol 79, 3987–3997.[CrossRef]
    [Google Scholar]
  96. Schumacher, D., McKinney, C., Kaufer, B. B. & Osterrieder, N. ( 2008; ). Enzymatically inactive US3 protein kinase of Marek's disease virus (MDV) is capable of depolymerizing F-actin but results in accumulation of virions in perinuclear invaginations and reduced virus growth. Virology 375, 37–47.[CrossRef]
    [Google Scholar]
  97. Skiba, M., Glowinski, F., Koczan, D., Mettenleiter, T. C. & Karger, A. ( 2010; ). Gene expression profiling of Pseudorabies virus (PrV) infected bovine cells by combination of transcript analysis and quantitative proteomic techniques. Vet Microbiol 143, 14–20.[CrossRef]
    [Google Scholar]
  98. Sloan, D. D. & Jerome, K. R. ( 2007; ). Herpes simplex virus remodels T-cell receptor signaling, resulting in p38-dependent selective synthesis of interleukin-10. J Virol 81, 12504–12514.[CrossRef]
    [Google Scholar]
  99. Sloan, D. D., Zahariadis, G., Posavad, C. M., Pate, N. T., Kussick, S. J. & Jerome, K. R. ( 2003; ). CTL are inactivated by herpes simplex virus-infected cells expressing a viral protein kinase. J Immunol 171, 6733–6741.[CrossRef]
    [Google Scholar]
  100. Sloan, D. D., Han, J. Y., Sandifer, T. K., Stewart, M., Hinz, A. J., Yoon, M., Johnson, D. C., Spear, P. G. & Jerome, K. R. ( 2006; ). Inhibition of TCR signaling by herpes simplex virus. J Immunol 176, 1825–1833.[CrossRef]
    [Google Scholar]
  101. Soong, W., Schultz, J. C., Patera, A. C., Sommer, M. H. & Cohen, J. I. ( 2000; ). Infection of human T lymphocytes with varicella-zoster virus: an analysis with viral mutants and clinical isolates. J Virol 74, 1864–1870.[CrossRef]
    [Google Scholar]
  102. Takashima, Y., Tamura, H., Xuan, X. & Otsuka, H. ( 1999; ). Identification of the US3 gene product of BHV-1 as a protein kinase and characterization of BHV-1 mutants of the US3 gene. Virus Res 59, 23–34.[CrossRef]
    [Google Scholar]
  103. Van den Broeke, C., Deruelle, M., Nauwynck, H. J., Coller, K. E., Smith, G. A., Van Doorsselaere, J. & Favoreel, H. W. ( 2009a; ). The kinase activity of pseudorabies virus US3 is required for modulation of the actin cytoskeleton. Virology 385, 155–160.[CrossRef]
    [Google Scholar]
  104. Van den Broeke, C., Radu, M., Deruelle, M., Nauwynck, H., Hofmann, C., Jaffer, Z. M., Chernoff, J. & Favoreel, H. W. ( 2009b; ). Alphaherpesvirus US3-mediated reorganization of the actin cytoskeleton is mediated by group A p21-activated kinases. Proc Natl Acad Sci U S A 106, 8707–8712.[CrossRef]
    [Google Scholar]
  105. Van Minnebruggen, G., Favoreel, H. W., Jacobs, L. & Nauwynck, H. J. ( 2003; ). Pseudorabies virus US3 protein kinase mediates actin stress fiber breakdown. J Virol 77, 9074–9080.[CrossRef]
    [Google Scholar]
  106. Van Minnebruggen, G., Favoreel, H. W. & Nauwynck, H. J. ( 2004; ). Internalization of pseudorabies virus glycoprotein B is mediated by an interaction between the YQRL motif in its cytoplasmic domain and the clathrin-associated AP-2 adaptor complex. J Virol 78, 8852–8859.[CrossRef]
    [Google Scholar]
  107. van Zijl, M., van der Gulden, H., de Wind, N., Gielkens, A. & Berns, A. ( 1990; ). Identification of two genes in the unique short region of pseudorabies virus; comparison with herpes simplex virus and varicella-zoster virus. J Gen Virol 71, 1747–1755.[CrossRef]
    [Google Scholar]
  108. Wagenaar, F., Pol, J. M., Peeters, B., Gielkens, A. L., de Wind, N. & Kimman, T. G. ( 1995; ). The US3-encoded protein kinase from pseudorabies virus affects egress of virions from the nucleus. J Gen Virol 76, 1851–1859.[CrossRef]
    [Google Scholar]
  109. Walters, M. S., Erazo, A., Kinchington, P. R. & Silverstein, S. ( 2009; ). Histone deacetylases 1 and 2 are phosphorylated at novel sites during varicella-zoster virus infection. J Virol 83, 11502–11513.[CrossRef]
    [Google Scholar]
  110. Walters, M. S., Kinchington, P. R., Banfield, B. W. & Silverstein, S. ( 2010; ). Hyperphosphorylation of histone deacetylase 2 by alphaherpesvirus US3 kinase. J Virol 84, 9666–9676.[CrossRef]
    [Google Scholar]
  111. Wisner, T. W., Wright, C. C., Kato, A., Kawaguchi, Y., Mou, F., Baines, J. D., Roller, R. J. & Johnson, D. C. ( 2009; ). Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase. J Virol 83, 3115–3126.[CrossRef]
    [Google Scholar]
  112. York, I. A. & Johnson, D. C. ( 1993; ). Direct contact with herpes simplex virus-infected cells results in inhibition of lymphokine-activated killer cells because of cell-to-cell spread of virus. J Infect Dis 168, 1127–1132.[CrossRef]
    [Google Scholar]
  113. Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S. J. ( 1996; ). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3-3 not BCL-XL. Cell 87, 619–628.[CrossRef]
    [Google Scholar]
  114. Zhang, G., Stevens, R. & Leader, D. P. ( 1990; ). The protein kinase encoded in the short unique region of pseudorabies virus: description of the gene and identification of its product in virions and in infected cells. J Gen Virol 71, 1757–1765.[CrossRef]
    [Google Scholar]
  115. Zhou, X. M., Liu, Y., Payne, G., Lutz, R. J. & Chittenden, T. ( 2000; ). Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155. J Biol Chem 275, 25046–25051.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.025593-0
Loading
/content/journal/jgv/10.1099/vir.0.025593-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error