1887

Abstract

Cells of primary effusion lymphoma (PEL), a B-cell non-Hodgkin's lymphoma, are latently infected by Kaposi's sarcoma-associated herpesvirus (KSHV), with about 80 % of PEL also co-infected with Epstein–Barr virus (EBV). Both viruses can be reactivated into their lytic replication cycle in PEL by chemical inducers. However, simultaneous activation of both lytic cascades leads to mutual lytic cycle co-repression. The plasma cell-differentiation factor X-box binding protein 1 (XBP-1) transactivates the KSHV immediate–early promoter leading to the production of the replication and transcription activator protein (RTA), and reactivation of KSHV from latency. XBP-1 has been reported to act similarly on the EBV immediate–early promoter Zp, leading to the production of the lytic-cycle transactivator protein BZLF1. Here we show that activated B-cell terminal-differentiation transcription factor X-box binding protein 1 (XBP-1s) does not induce EBV BZLF1 and BRLF1 expression in PEL and BL cell lines, despite inducing lytic reactivation of KSHV in PEL. We show that XBP-1s transactivates the KSHV RTA promoter but does not transactivate the EBV BZLF1 promoter in non-B-cells by using a luciferase assay. Co-expression of activated protein kinase D, which can phosphorylate and inactivate class II histone deacetylases (HDACs), does not rescue XBP-1 activity on Zp nor does it induce BZLF1 and BRLF1 expression in PEL. Finally, chemical inducers of KSHV and EBV lytic replication in PEL, including HDAC inhibitors, do not lead to XBP-1 activation. We conclude that XBP-1 specifically reactivates the KSHV lytic cycle in dually infected PELs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.025494-0
2011-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/2/421.html?itemId=/content/journal/jgv/10.1099/vir.0.025494-0&mimeType=html&fmt=ahah

References

  1. Amon, W., Binne, U. K., Bryant, H., Jenkins, P. J., Karstegl, C. E. & Farrell, P. J.(2004). Lytic cycle gene regulation of Epstein-Barr virus. J Virol 78, 13460–13469.[CrossRef] [Google Scholar]
  2. Anastasiadou, E., Vaeth, S., Cuomo, L., Boccellato, F., Vincenti, S., Cirone, M., Presutti, C., Junker, S., Winberg, G. & other authors(2009). Epstein–Barr virus infection leads to partial phenotypic reversion of terminally differentiated malignant B cells. Cancer Lett 284, 165–174.[CrossRef] [Google Scholar]
  3. Babcock, G. J., Decker, L. L., Volk, M. & Thorley-Lawson, D. A.(1998). EBV persistence in memory B cells in vivo. Immunity 9, 395–404.[CrossRef] [Google Scholar]
  4. Babcock, G. J., Decker, L. L., Freeman, R. B. & Thorley-Lawson, D. A.(1999). Epstein–Barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J Exp Med 190, 567–576.[CrossRef] [Google Scholar]
  5. Bayliss, G. J. & Wolf, H.(1981). The regulated expression of Epstein–Barr virus. III. Proteins specified by EBV during the lytic cycle. J Gen Virol 56, 105–118.[CrossRef] [Google Scholar]
  6. Bhende, P. M., Dickerson, S. J., Sun, X., Feng, W. H. & Kenney, S. C.(2007). X-box-binding protein 1 activates lytic Epstein-Barr virus gene expression in combination with protein kinase D. J Virol 81, 7363–7370.[CrossRef] [Google Scholar]
  7. Bryant, H. & Farrell, P. J.(2002). Signal transduction and transcription factor modification during reactivation of Epstein-Barr virus from latency. J Virol 76, 10290–10298.[CrossRef] [Google Scholar]
  8. Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., Clark, S. G. & Ron, D.(2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96.[CrossRef] [Google Scholar]
  9. Caselli, E., Galvan, M., Cassai, E., Caruso, A., Sighinolfi, L. & Di Luca, D.(2005). Human herpesvirus 8 enhances human immunodeficiency virus replication in acutely infected cells and induces reactivation in latently infected cells. Blood 106, 2790–2797.[CrossRef] [Google Scholar]
  10. Chang, L. K. & Liu, S. T.(2000). Activation of the BRLF1 promoter and lytic cycle of Epstein–Barr virus by histone acetylation. Nucleic Acids Res 28, 3918–3925.[CrossRef] [Google Scholar]
  11. Chia, M. C., Leung, A., Krushel, T., Alajez, N. M., Lo, K. W., Busson, P., Klamut, H. J., Bastianutto, C. & Liu, F. F.(2008). Nuclear factor-Y and Epstein–Barr virus in nasopharyngeal cancer. Clin Cancer Res 14, 984–994.[CrossRef] [Google Scholar]
  12. Countryman, J. & Miller, G.(1985). Activation of expression of latent Epstein–Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A 82, 4085–4089.[CrossRef] [Google Scholar]
  13. Countryman, J. K., Gradoville, L. & Miller, G.(2008). Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein-Barr virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors. J Virol 82, 4706–4719.[CrossRef] [Google Scholar]
  14. Dalton-Griffin, L., Wilson, S. J. & Kellam, P.(2009). X-box binding protein 1 contributes to induction of the Kaposi's sarcoma-associated herpesvirus lytic cycle under hypoxic conditions. J Virol 83, 7202–7209.[CrossRef] [Google Scholar]
  15. Fan, W., Bubman, D., Chadburn, A., Harrington, W. J., Jr, Cesarman, E. & Knowles, D. M.(2005). Distinct subsets of primary effusion lymphoma can be identified based on their cellular gene expression profile and viral association. J Virol 79, 1244–1251.[CrossRef] [Google Scholar]
  16. Feng, W. H. & Kenney, S. C.(2006). Valproic acid enhances the efficacy of chemotherapy in EBV-positive tumors by increasing lytic viral gene expression. Cancer Res 66, 8762–8769.[CrossRef] [Google Scholar]
  17. Gires, O., Zimber-Strobl, U., Gonnella, R., Ueffing, M., Marschall, G., Zeidler, R., Pich, D. & Hammerschmidt, W.(1997). Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J 16, 6131–6140.[CrossRef] [Google Scholar]
  18. Gradoville, L., Kwa, D., El-Guindy, A. & Miller, G.(2002). Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle. J Virol 76, 5612–5626.[CrossRef] [Google Scholar]
  19. Gruffat, H., Manet, E. & Sergeant, A.(2002). MEF2-mediated recruitment of class II HDAC at the EBV immediate early gene BZLF1 links latency and chromatin remodeling. EMBO Rep 3, 141–146.[CrossRef] [Google Scholar]
  20. Jiang, Y., Xu, D., Zhao, Y. & Zhang, L.(2008). Mutual inhibition between Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus lytic replication initiators in dually-infected primary effusion lymphoma. PLoS One 3, e1569.[CrossRef] [Google Scholar]
  21. Joseph, A. M., Babcock, G. J. & Thorley-Lawson, D. A.(2000). Cells expressing the Epstein-Barr virus growth program are present in and restricted to the naive B-cell subset of healthy tonsils. J Virol 74, 9964–9971.[CrossRef] [Google Scholar]
  22. Kenney, S. C., Holley-Guthrie, E., Quinlivan, E. B., Gutsch, D., Zhang, Q., Bender, T., Giot, J. F. & Sergeant, A.(1992). The cellular oncogene c-myb can interact synergistically with the Epstein–Barr virus BZLF1 transactivator in lymphoid cells. Mol Cell Biol 12, 136–146. [Google Scholar]
  23. Laichalk, L. L. & Thorley-Lawson, D. A.(2005). Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79, 1296–1307.[CrossRef] [Google Scholar]
  24. Liang, X., Collins, C. M., Mendel, J. B., Iwakoshi, N. N. & Speck, S. H.(2009). Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes. PLoS Pathog 5, e1000677.[CrossRef] [Google Scholar]
  25. Lukac, D. M., Renne, R., Kirshner, J. R. & Ganem, D.(1998). Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252, 304–312.[CrossRef] [Google Scholar]
  26. Maestre, L., Tooze, R., Canamero, M., Montes-Moreno, S., Ramos, R., Doody, G., Boll, M., Barrans, S., Baena, S. & other authors(2009). Expression pattern of XBP1(S) in human B-cell lymphomas. Haematologica 94, 419–422.[CrossRef] [Google Scholar]
  27. Matthews, S. A., Rozengurt, E. & Cantrell, D.(2000). Protein kinase D. A selective target for antigen receptors and a downstream target for protein kinase C in lymphocytes. J Exp Med 191, 2075–2082.[CrossRef] [Google Scholar]
  28. McDonald, C., Karstegl, C. E., Kellam, P. & Farrell, P. J.(2010). Regulation of the Epstein–Barr virus Zp promoter in B lymphocytes during reactivation from latency. J Gen Virol 91, 622–629.[CrossRef] [Google Scholar]
  29. Miller, G., Heston, L., Grogan, E., Gradoville, L., Rigsby, M., Sun, R., Shedd, D., Kushnaryov, V. M., Grossberg, S. & Chang, Y.(1997). Selective switch between latency and lytic replication of Kaposi's sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol 71, 314–324. [Google Scholar]
  30. Panagopoulos, D., Victoratos, P., Alexiou, M., Kollias, G. & Mosialos, G.(2004). Comparative analysis of signal transduction by CD40 and the Epstein-Barr virus oncoprotein LMP1 in vivo. J Virol 78, 13253–13261.[CrossRef] [Google Scholar]
  31. Reimold, A. M., Iwakoshi, N. N., Manis, J., Vallabhajosyula, P., Szomolanyi-Tsuda, E., Gravallese, E. M., Friend, D., Grusby, M. J., Alt, F. & Glimcher, L. H.(2001). Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307.[CrossRef] [Google Scholar]
  32. Rey, O., Papazyan, R., Waldron, R. T., Young, S. H., Lippincott-Schwartz, J., Jacamo, R. & Rozengurt, E.(2006). The nuclear import of protein kinase D3 requires its catalytic activity. J Biol Chem 281, 5149–5157.[CrossRef] [Google Scholar]
  33. Robertson, K. D. & Ambinder, R. F.(1997). Methylation of the Epstein-Barr virus genome in normal lymphocytes. Blood 90, 4480–4484. [Google Scholar]
  34. Rooney, C. M., Rowe, D. T., Ragot, T. & Farrell, P. J.(1989). The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J Virol 63, 3109–3116. [Google Scholar]
  35. Schelcher, C., Valencia, S., Delecluse, H. J., Hicks, M. & Sinclair, A. J.(2005). Mutation of a single amino acid residue in the basic region of the Epstein-Barr virus (EBV) lytic cycle switch protein Zta (BZLF1) prevents reactivation of EBV from latency. J Virol 79, 13822–13828.[CrossRef] [Google Scholar]
  36. Souza, T. A., Stollar, B. D., Sullivan, J. L., Luzuriaga, K. & Thorley-Lawson, D. A.(2005). Peripheral B cells latently infected with Epstein–Barr virus display molecular hallmarks of classical antigen-selected memory B cells. Proc Natl Acad Sci U S A 102, 18093–18098.[CrossRef] [Google Scholar]
  37. Storz, P. & Toker, A.(2003). Protein kinase D mediates a stress-induced NF-κB activation and survival pathway. EMBO J 22, 109–120.[CrossRef] [Google Scholar]
  38. Sun, C. C. & Thorley-Lawson, D. A.(2007). Plasma cell-specific transcription factor XBP-1s binds to and transactivates the Epstein-Barr virus BZLF1 promoter. J Virol 81, 13566–13577.[CrossRef] [Google Scholar]
  39. Thorley-Lawson, D. A.(2001). Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1, 75–82.[CrossRef] [Google Scholar]
  40. Thorley-Lawson, D. A. & Gross, A.(2004). Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N Engl J Med 350, 1328–1337.[CrossRef] [Google Scholar]
  41. Trivedi, P., Takazawa, K., Zompetta, C., Cuomo, L., Anastasiadou, E., Carbone, A., Uccini, S., Belardelli, F., Takada, K. & other authors(2004). Infection of HHV-8+ primary effusion lymphoma cells with a recombinant Epstein-Barr virus leads to restricted EBV latency, altered phenotype, and increased tumorigenicity without affecting TCL1 expression. Blood 103, 313–316.[CrossRef] [Google Scholar]
  42. Wang, Q. J.(2006). PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci 27, 317–323.[CrossRef] [Google Scholar]
  43. Wilson, S. J., Tsao, E. H., Webb, B. L., Ye, H., Dalton-Griffin, L., Tsantoulas, C., Gale, C. V., Du, M. Q., Whitehouse, A. & Kellam, P.(2007). X box binding protein XBP-1s transactivates the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF50 promoter, linking plasma cell differentiation to KSHV reactivation from latency. J Virol 81, 13578–13586.[CrossRef] [Google Scholar]
  44. Xu, D., Coleman, T., Zhang, J., Fagot, A., Kotalik, C., Zhao, L., Trivedi, P., Jones, C. & Zhang, L.(2007). Epstein-Barr virus inhibits Kaposi's sarcoma-associated herpesvirus lytic replication in primary effusion lymphomas. J Virol 81, 6068–6078.[CrossRef] [Google Scholar]
  45. Ye, F. C., Blackbourn, D. J., Mengel, M., Xie, J. P., Qian, L. W., Greene, W., Yeh, I. T., Graham, D. & Gao, S. J.(2007). Kaposi's sarcoma-associated herpesvirus promotes angiogenesis by inducing angiopoietin-2 expression via AP-1 and Ets1. J Virol 81, 3980–3991.[CrossRef] [Google Scholar]
  46. Yu, F., Feng, J., Harada, J. N., Chanda, S. K., Kenney, S. C. & Sun, R.(2007). B cell terminal differentiation factor XBP-1 induces reactivation of Kaposi's sarcoma-associated herpesvirus. FEBS Lett 581, 3485–3488.[CrossRef] [Google Scholar]
  47. Yuan, J., Cahir-McFarland, E., Zhao, B. & Kieff, E.(2006). Virus and cell RNAs expressed during Epstein-Barr virus replication. J Virol 80, 2548–2565.[CrossRef] [Google Scholar]
  48. Zugaza, J. L., Sinnett-Smith, J., Van Lint, J. & Rozengurt, E.(1996). Protein kinase D (PKD) activation in intact cells through a protein kinase C-dependent signal transduction pathway. EMBO J 15, 6220–6230. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.025494-0
Loading
/content/journal/jgv/10.1099/vir.0.025494-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error