Molecular characterization of a new species in the genus associated with mink epizootic catarrhal gastroenteritis Free

Abstract

A coronavirus (CoV) previously shown to be associated with catarrhal gastroenteritis in mink () was identified by electron microscopy in mink faeces from two fur farms in Wisconsin and Minnesota in 1998. A pan-coronavirus and a genus-specific RT-PCR assay were used initially to demonstrate that the newly discovered mink CoVs (MCoVs) were members of the genus . Subsequently, using a random RT-PCR approach, full-genomic sequences were generated that further confirmed that, phylogenetically, the MCoVs belonged to the genus , with closest relatedness to the recently identified but only partially sequenced (fragments of the polymerase, and full-length spike, 3c, envelope, nucleoprotein, membrane, 3x and 7b genes) ferret enteric coronavirus (FRECV) and ferret systemic coronavirus (FRSCV). The molecular data presented in this study provide the first genetic evidence for a new coronavirus associated with epizootic catarrhal gastroenteritis outbreaks in mink and demonstrate that MCoVs possess high genomic variability and relatively low overall nucleotide sequence identities (91.7 %) between contemporary strains. Additionally, the new MCoVs appeared to be phylogenetically distant from human (229E and NL63) and other alphacoronaviruses and did not belong to the species. It is proposed that, together with the partially sequenced FRECV and FRSCV, they comprise a new species within the genus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.025353-0
2011-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/6/1369.html?itemId=/content/journal/jgv/10.1099/vir.0.025353-0&mimeType=html&fmt=ahah

References

  1. Alekseev K. P., Vlasova A. N., Jung K., Hasoksuz M., Zhang X., Halpin R., Wang S., Ghedin E., Spiro D., Saif L. J. 2008; Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences. J Virol 82:12422–12431 [View Article][PubMed]
    [Google Scholar]
  2. Allander T., Tammi M. T., Eriksson M., Bjerkner A., Tiveljung-Lindell A., Andersson B. 2005; Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A 102:12891–12896 [View Article][PubMed]
    [Google Scholar]
  3. Brierley I., Boursnell M. E., Binns M. M., Bilimoria B., Blok V. C., Brown T. D., Inglis S. C. 1987; An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 6:3779–3785[PubMed]
    [Google Scholar]
  4. Budzilowicz C. J., Wilczynski S. P., Weiss S. R. 1985; Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the 3′ end of the viral mRNA leader sequence. J Virol 53:834–840[PubMed]
    [Google Scholar]
  5. Cavanagh D. 1997; Nidovirales: a new order comprising Coronaviridae and Arteriviridae . Arch Virol 142:629–633[PubMed]
    [Google Scholar]
  6. Chang H.-W., de Groot R. J., Egberink H. F., Rottier P. J. 2010; Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene. J Gen Virol 91:415–420 [View Article][PubMed]
    [Google Scholar]
  7. Collisson E. W., Williams A. K., Vonder Haar R., Li W., Sneed L. W. 1990; Sequence comparisons of the 3′ end of the genomes of five strains of avian infectious bronchitis virus. Adv Exp Med Biol 276:373–377[PubMed]
    [Google Scholar]
  8. De Groot R. J., Andeweg A. C., Horzinek M. C., Spaan W. J. 1988; Sequence analysis of the 3′-end of the feline coronavirus FIPV 79-1146 genome: comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology 167:370–376[PubMed] [CrossRef]
    [Google Scholar]
  9. Djikeng A., Halpin R., Kuzmickas R., Depasse J., Feldblyum J., Sengamalay N., Afonso C., Zhang X., Anderson N. G. et al. 2008; Viral genome sequencing by random priming methods. BMC Genomics 9:5 [View Article][PubMed]
    [Google Scholar]
  10. Domingo E., Baranowski E., Ruiz-Jarabo C. M., Martín-Hernández A. M., Sáiz J. C., Escarmís C. 1998; Quasispecies structure and persistence of RNA viruses. Emerg Infect Dis 4:521–527 [View Article][PubMed]
    [Google Scholar]
  11. Drosten C., Preiser W., Günther S., Schmitz H., Doerr H. W. 2003; Severe acute respiratory syndrome: identification of the etiological agent. Trends Mol Med 9:325–327 [View Article][PubMed]
    [Google Scholar]
  12. Dye C., Temperton N., Siddell S. G. 2007; Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines. J Gen Virol 88:1753–1760 [View Article][PubMed]
    [Google Scholar]
  13. Evermann J. F., Smith A. W., Skilling D. E., McKeirnan A. J. 1983; Ultrastructure of newly recognized caliciviruses of the dog and mink. Arch Virol 76:257–261 [View Article][PubMed]
    [Google Scholar]
  14. Gajer P., Schatz M., Salzberg S. L. 2004; Automated correction of genome sequence errors. Nucleic Acids Res 32:562–569 [View Article][PubMed]
    [Google Scholar]
  15. Gillim-Ross L., Taylor J., Scholl D. R., Ridenour J., Masters P. S., Wentworth D. E. 2004; Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR. J Clin Microbiol 42:3196–3206 [View Article][PubMed]
    [Google Scholar]
  16. González J. M., Gomez-Puertas P., Cavanagh D., Gorbalenya A. E., Enjuanes L. 2003; A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae . Arch Virol 148:2207–2235 [View Article][PubMed]
    [Google Scholar]
  17. Gorbalenya A. E., Enjuanes L., Ziebuhr J., Snijder E. J. 2006; Nidovirales: evolving the largest RNA virus genome. Virus Res 117:17–37 [View Article][PubMed]
    [Google Scholar]
  18. Gorham J. R., Evermann J. F., Ward A., Pearson R., Shen D., Hartsough G. R., Leathers C. 1990; Detection of coronavirus-like particles from mink with epizootic catarrhal gastroenteritis. Can J Vet Res 54:383–384[PubMed]
    [Google Scholar]
  19. Guan Y., Zheng B. J., He Y. Q., Liu X. L., Zhuang Z. X., Cheung C. L., Luo S. W., Li P. H., Zhang L. J. et al. 2003; Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276–278 [View Article][PubMed]
    [Google Scholar]
  20. Haijema B. J., Volders H., Rottier P. J. 2004; Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. J Virol 78:3863–3871 [View Article][PubMed]
    [Google Scholar]
  21. Hasoksuz M., Alekseev K., Vlasova A., Zhang X., Spiro D., Halpin R., Wang S., Ghedin E., Saif L. J. 2007; Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe. J Virol 81:4981–4990 [View Article][PubMed]
    [Google Scholar]
  22. Have P., Moving V., Svansson V., Uttenthal A., Bloch B. 1992; Coronavirus infection in mink (Mustela vison). Serological evidence of infection with a coronavirus related to transmissible gastroenteritis virus and porcine epidemic diarrhea virus. Vet Microbiol 31:1–10 [View Article][PubMed]
    [Google Scholar]
  23. Heller L. K., Gillim-Ross L., Olivieri E. R., Wentworth D. E. 2006; Mustela vison ACE2 functions as a receptor for SARS-coronavirus. Adv Exp Med Biol 581:507–510 [View Article][PubMed]
    [Google Scholar]
  24. Herrewegh A. A., Vennema H., Horzinek M. C., Rottier P. J., de Groot R. J. 1995; The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology 212:622–631 [View Article][PubMed]
    [Google Scholar]
  25. Horsburgh B. C., Brierley I., Brown T. D. 1992; Analysis of a 9.6 kb sequence from the 3′ end of canine coronavirus genomic RNA. J Gen Virol 73:2849–2862 [View Article][PubMed]
    [Google Scholar]
  26. Izeta A., Smerdou C., Alonso S., Penzes Z., Mendez A., Plana-Durán J., Enjuanes L. 1999; Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes. J Virol 73:1535–1545[PubMed]
    [Google Scholar]
  27. Kan B., Wang M., Jing H., Xu H., Jiang X., Yan M., Liang W., Zheng H., Wan K. et al. 2005; Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol 79:11892–11900 [View Article][PubMed]
    [Google Scholar]
  28. Kennedy M., Boedeker N., Gibbs P., Kania S. 2001; Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. Vet Microbiol 81:227–234 [View Article][PubMed]
    [Google Scholar]
  29. Ksiazek T. G., Erdman D., Goldsmith C. S., Zaki S. R., Peret T., Emery S., Tong S., Urbani C., Comer J. A. et al. 2003; A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966 [View Article][PubMed]
    [Google Scholar]
  30. Lai M. M., Cavanagh D. 1997; The molecular biology of coronaviruses. Adv Virus Res 48:1–100 [View Article][PubMed]
    [Google Scholar]
  31. Larsen A. E., Gorham J. R. 1975; A new mink enteritis: an initial report. Vet Med Small Anim Clin 70:291–292[PubMed]
    [Google Scholar]
  32. Lau S. K., Woo P. C., Li K. S., Huang Y., Tsoi H.-W., Wong B. H., Wong S. S., Leung S.-Y., Chan K.-H., Yuen K.-Y. 2005; Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102:14040–14045 [View Article][PubMed]
    [Google Scholar]
  33. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J. H., Wang H., Crameri G., Hu Z. et al. 2005; Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679 [View Article][PubMed]
    [Google Scholar]
  34. Liu D. X., Inglis S. C. 1992; Identification of two new polypeptides encoded by mRNA5 of the coronavirus infectious bronchitis virus. Virology 186:342–347 [View Article][PubMed]
    [Google Scholar]
  35. Liu D. X., Cavanagh D., Green P., Inglis S. C. 1991; A polycistronic mRNA specified by the coronavirus infectious bronchitis virus. Virology 184:531–544 [View Article][PubMed]
    [Google Scholar]
  36. Macartney L., Parrish C. R., Binn L. N., Carmichael L. E. 1988; Characterization of minute virus of canines (MVC) and its pathogenicity for pups. Cornell Vet 78:131–145[PubMed]
    [Google Scholar]
  37. Martina B. E., Haagmans B. L., Kuiken T., Fouchier R. A., Rimmelzwaan G. F., Van Amerongen G., Peiris J. S., Lim W., Osterhaus A. D. 2003; Virology: SARS virus infection of cats and ferrets. Nature 425:915 [View Article][PubMed]
    [Google Scholar]
  38. Mossel E. C., Huang C., Narayanan K., Makino S., Tesh R. B., Peters C. J. 2005; Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J Virol 79:3846–3850 [View Article][PubMed]
    [Google Scholar]
  39. Oostra M., de Haan C. A., de Groot R. J., Rottier P. J. 2006; Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M. J Virol 80:2326–2336 [View Article][PubMed]
    [Google Scholar]
  40. Park S.-J., Moon H.-J., Luo Y., Kim H.-K., Kim E.-M., Yang J.-S., Song D.-S., Kang B.-K., Lee C.-S., Park B.-K. 2008; Cloning and further sequence analysis of the ORF3 gene of wild- and attenuated-type porcine epidemic diarrhea viruses. Virus Genes 36:95–104 [View Article][PubMed]
    [Google Scholar]
  41. Parrish C. R., Have P., Foreyt W. J., Evermann J. F., Senda M., Carmichael L. E. 1988; The global spread and replacement of canine parvovirus strains. J Gen Virol 69:1111–1116 [View Article][PubMed]
    [Google Scholar]
  42. Pasternak A. O., van den Born E., Spaan W. J., Snijder E. J. 2001; Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO J 20:7220–7228 [View Article][PubMed]
    [Google Scholar]
  43. Pedersen N. C. 2009; A review of feline infectious peritonitis virus infection: 1963-2008. J Feline Med Surg 11:225–258 [View Article][PubMed]
    [Google Scholar]
  44. Peiris J. S., Guan Y., Yuen K. Y. 2004; Severe acute respiratory syndrome. Nat Med 10:SupplS88–S97 [View Article][PubMed]
    [Google Scholar]
  45. Penzes Z., Gonzalez J. M., Calvo E., Izeta A., Smerdou C., Méndez A., Sanchez C. M., Sola I., Almazan F., Enjuanes L. 2001; Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the Purdue virus cluster. Virus Genes 23:105–118 [View Article][PubMed]
    [Google Scholar]
  46. Pop M., Phillippy A., Delcher A. L., Salzberg S. L. 2004; Comparative genome assembly. Brief Bioinform 5:237–248 [View Article][PubMed]
    [Google Scholar]
  47. Pratelli A., Martella V., Decaro N., Tinelli A., Camero M., Cirone F., Elia G., Cavalli A., Corrente M. et al. 2003; Genetic diversity of a canine coronavirus detected in pups with diarrhoea in Italy. J Virol Methods 110:9–17 [View Article][PubMed]
    [Google Scholar]
  48. Rottier P. J., Nakamura K., Schellen P., Volders H., Haijema B. J. 2005; Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. J Virol 79:14122–14130 [View Article][PubMed]
    [Google Scholar]
  49. Saif L. J., Brock K. V., Redman D. R., Kohler E. M. 1991; Winter dysentery in dairy herds: electron microscopic and serological evidence for an association with coronavirus infection. Vet Rec 128:447–449 [View Article][PubMed]
    [Google Scholar]
  50. Sawicki S. G., Sawicki D. L. 1998; A new model for coronavirus transcription. Adv Exp Med Biol 440:215–219[PubMed]
    [Google Scholar]
  51. Snijder E. J., Bredenbeek P. J., Dobbe J. C., Thiel V., Ziebuhr J., Poon L. L., Guan Y., Rozanov M., Spaan W. J., Gorbalenya A. E. 2003; Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004 [View Article][PubMed]
    [Google Scholar]
  52. Song H.-D., Tu C.-C., Zhang G.-W., Wang S.-Y., Zheng K., Lei L.-C., Chen Q.-X., Gao Y. -W., Zhou H.-Q. et al. 2005; Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A 102:2430–2435 [View Article][PubMed]
    [Google Scholar]
  53. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. J Gen Virol 69:2939–2952 [View Article][PubMed]
    [Google Scholar]
  54. Tung F. Y., Abraham S., Sethna M., Hung S. L., Sethna P., Hogue B. G., Brian D. A. 1992; The 9-kDa hydrophobic protein encoded at the 3′ end of the porcine transmissible gastroenteritis coronavirus genome is membrane-associated. Virology 186:676–683 [View Article][PubMed]
    [Google Scholar]
  55. Tyrrell D. A., Almeida J. D., Cunningham C. H., Dowdle W. R., Hofstad M. S., McIntosh K., Tajima M., Zakstelskaya L. Y., Easterday B. C. et al. 1975; Coronaviridae . Intervirology 5:76–82[PubMed]
    [Google Scholar]
  56. Vennema H., Heijnen L., Rottier P. J., Horzinek M. C., Spaan W. J. 1992a). A novel glycoprotein of feline infectious peritonitis coronavirus contains a KDEL-like endoplasmic reticulum retention signal. J Virol 66:4951–4956[PubMed]
    [Google Scholar]
  57. Vennema H., Rossen J. W., Wesseling J., Horzinek M. C., Rottier P. J. 1992b). Genomic organization and expression of the 3′ end of the canine and feline enteric coronaviruses. Virology 191:134–140 [View Article][PubMed]
    [Google Scholar]
  58. Vennema H., Poland A., Foley J., Pedersen N. C. 1998; Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243:150–157 [View Article][PubMed]
    [Google Scholar]
  59. Wang M., Yan M., Xu H., Liang W., Kan B., Zheng B., Chen H., Zheng H., Xu Y. et al. 2005; SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis 11:1860–1865[PubMed] [CrossRef]
    [Google Scholar]
  60. Wang S., Sundaram J. P., Spiro D. 2010; vigor, an annotation program for small viral genomes. BMC Bioinformatics 11:451 [View Article][PubMed]
    [Google Scholar]
  61. Wise A. G., Kiupel M., Maes R. K. 2006; Molecular characterization of a novel coronavirus associated with epizootic catarrhal enteritis (ECE) in ferrets. Virology 349:164–174 [View Article][PubMed]
    [Google Scholar]
  62. Wise A. G., Kiupel M., Garner M. M., Clark A. K., Maes R. K. 2010; Comparative sequence analysis of the distal one-third of the genomes of a systemic and an enteric ferret coronavirus. Virus Res 149:42–50 [View Article][PubMed]
    [Google Scholar]
  63. Woods R. D. 2001; Efficacy of a transmissible gastroenteritis coronavirus with an altered ORF-3 gene. Can J Vet Res 65:28–32[PubMed]
    [Google Scholar]
  64. Wu D., Tu C., Xin C., Xuan H., Meng Q., Liu Y., Yu Y., Guan Y., Jiang Y. et al. 2005; Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates. J Virol 79:2620–2625 [View Article][PubMed]
    [Google Scholar]
  65. Zhang X., Hasoksuz M., Spiro D., Halpin R., Wang S., Stollar S., Janies D., Hadya N., Tang Y. et al. 2007; Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus. Virology 358:424–435 [View Article][PubMed]
    [Google Scholar]
  66. Ziebuhr J. 2005; The coronavirus replicase. Curr Top Microbiol Immunol 287:57–94 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.025353-0
Loading
/content/journal/jgv/10.1099/vir.0.025353-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed