A tailed cyanophage, S-CAM4 (family ) from California coastal waters that infects , was characterized by atomic force microscopy. Capsomeric clusters of protein composing the 85 nm diameter icosahedral head were resolved and indicated a triangulation number of =16. The 140 nm tail assembly, exhibiting a helical appearance with a 13 nm pitch, was seen in both extended and contracted states, the latter exposing the injection tube within. Attached below the base plate were six 50 nm long fibres, and six fibres 275–300 nm in length protruded from the periphery of the base plate. Protein-free DNA was abundant from ruptured heads. Virus attached en masse, in clusters and individually to cells, and cell fragments were recorded, as were perforated cells lysed by the phages. The capsid structure appears most closely related to that of the cyanophage Syn9 and the phage SPO1, which may, in turn, be evolutionarily related to herpesvirus.


Article metrics loading...

Loading full text...

Full text loading...



  1. Angly, F. E., Felts, B., Breitbart, M., Salamon, P., Edwards, R. A., Carlson, C., Chan, A. M., Haynes, M., Kelley, S. & other authors(2006). The marine viromes of four oceanic regions. PLoS Biol 4, e368.[CrossRef] [Google Scholar]
  2. Baker, M. L., Jiang, W., Rixon, F. J. & Chiu, W.(2005). Common ancestry of herpesviruses and tailed DNA bacteriophages. J Virol 79, 14967–14970.[CrossRef] [Google Scholar]
  3. Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M.(1999). Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98, 825–833.[CrossRef] [Google Scholar]
  4. Bergh, O., Borsheim, K. Y., Bratbak, G. & Heldal, M.(1989). High abundance of viruses found in aquatic environments. Nature 340, 467–468.[CrossRef] [Google Scholar]
  5. Breitbart, M., Thompson, L. R., Suttle, C. A. & Sullivan, M. B.(2007). Exploring the vast diversity of marine viruses. Oceanography (Wash DC) 20, 135–139. [Google Scholar]
  6. Casjens, S.(1997). Principles of virion structure, function and assembly. In Structural Biology of Viruses, pp. 3–37. Edited by Chin, W., Burnett, R. M. & Garcea, R.. Oxford. : Oxford University Press. [Google Scholar]
  7. Casjens, S. & Weigele, P.(2005). DNA packaging by bacteriophage P22. In Viral Genome Packaging Machines: Genetics, Structure, and Mechanisms, pp. 80–88. Edited by Catalano, C. E.. Georgetown, TX. : Landes Bioscience. [Google Scholar]
  8. Caspar, D. L. & Klug, A.(1962). Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27, 1–24.[CrossRef] [Google Scholar]
  9. Davison, A. J., Trus, B. L., Cheng, N., Steven, A. C., Watson, M. S., Cunningham, C., Le Deuff, R. M. & Renault, T.(2005). A novel class of herpesvirus with bivalve hosts. J Gen Virol 86, 41–53.[CrossRef] [Google Scholar]
  10. Duda, R. L., Hendrix, R. W., Huang, W. M. & Conway, J. F.(2006). Shared architecture of bacteriophage SPO1 and herpesvirus capsids. Curr Biol 16, 440–443.[CrossRef] [Google Scholar]
  11. Eiserling, F. & Black, L. W.(1994). Pathways in T4 morphogenesis. In Molecular Biology of Bacteriophage T4, pp. 209–212. Edited by Karam, J. D.. Washington, DC. : American Society for Microbiology. [Google Scholar]
  12. Fokine, A., Chipman, P. R., Leiman, P. G., Mesyanzhinov, V. V., Rao, V. B. & Rossmann, M. G.(2004). Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci U S A 101, 6003–6008.[CrossRef] [Google Scholar]
  13. Fuhrman, J. A.(1999). Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548.[CrossRef] [Google Scholar]
  14. Fuhrman, J. A. & Noble, R. T.(1995). Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40, 1236–1242.[CrossRef] [Google Scholar]
  15. Hansma, H. G. & Hoh, J. H.(1994). Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct 23, 115–139.[CrossRef] [Google Scholar]
  16. Hansma, H. G. & Pietrasanta, L.(1998). Atomic force microscopy and other scanning probe microscopies. Curr Opin Chem Biol 2, 579–584.[CrossRef] [Google Scholar]
  17. Kindt, J., Tzlil, S., Ben-Shaul, A. & Gelbart, W. M.(2001). DNA packaging and ejection forces in bacteriophage. Proc Natl Acad Sci U S A 98, 13671–13674.[CrossRef] [Google Scholar]
  18. Ko, T. P., Day, J., Greenwood, A. & McPherson, A.(1994). Structures of three crystal forms of the sweet protein thaumatin. Acta Crystallogr D Biol Crystallogr 50, 813–825.[CrossRef] [Google Scholar]
  19. Kutter, E. & Sulakvelidze, A.(2005).Bacteriophage: Biology and Applications. Boca Raton, FL. : CRC Press. [Google Scholar]
  20. Kuznetsov, Y. G. & McPherson, A.(2006). Identification of DNA and RNA from retroviruses using ribonuclease A. Scanning 28, 278–281. [Google Scholar]
  21. Kuznetsov, Y. G., Konnert, J., Malkin, A. J. & McPherson, A.(1999). The advancement and structure of growth steps on thaumatin crystals visualized by atomic force microscopy at molecular resolution. Surf Sci 440, 69–80.[CrossRef] [Google Scholar]
  22. Kuznetsov, Y. G., Malkin, A. J., Lucas, R. W., Plomp, M. & McPherson, A.(2001). Imaging of viruses by atomic force microscopy. J Gen Virol 82, 2025–2034. [Google Scholar]
  23. Kuznetsov, Y. G., Datta, S., Kothari, N. H., Greenwood, A., Fan, H. & McPherson, A.(2002). Atomic force microscopy investigation of fibroblasts infected with wild-type and mutant murine leukemia virus (MuLV). Biophys J 83, 3665–3674.[CrossRef] [Google Scholar]
  24. Kuznetsov, Y. G., Victoria, J. G., Robinson, W. E., Jr & McPherson, A.(2003). Atomic force microscopy investigation of human immunodeficiency virus (HIV) and HIV-infected lymphocytes. J Virol 77, 11896–11909.[CrossRef] [Google Scholar]
  25. Kuznetsov, Y. G., Low, A., Fan, H. Y. & McPherson, A.(2004). Atomic force microscopy investigation of wild type moloney murine leukemia virus particles and virus particles lacking the envelope protein. Virology 323, 189–196.[CrossRef] [Google Scholar]
  26. Kuznetsov, Y. G., Low, A., Fan, H. & McPherson, A.(2005a). Atomic force microscopy investigation of isolated virions of murine leukemia virus. J Virol 79, 1970–1974.[CrossRef] [Google Scholar]
  27. Kuznetsov, Y. G., Daijogo, S., Zhou, J., Semler, B. L. & McPherson, A.(2005b). Atomic force microscopy analysis of icosahedral virus RNA. J Mol Biol 347, 41–52.[CrossRef] [Google Scholar]
  28. Kuznetsov, Y., Gershon, P. D. & McPherson, A.(2008). Atomic force microscopy investigation of vaccinia virus structure. J Virol 82, 7551–7566.[CrossRef] [Google Scholar]
  29. Lindell, D., Jaffe, J. D., Coleman, M. L., Futschik, M. E., Axmann, I. M., Rector, T., Kettler, G., Sullivan, M. B., Steen, R. & other authors(2007). Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86.[CrossRef] [Google Scholar]
  30. Marston, M. F. & Amrich, C. G.(2009). Recombination and microdiversity in coastal marine cyanophages. Environ Microbiol 11, 2893–2903.[CrossRef] [Google Scholar]
  31. Michaud, G., Zachary, A., Rao, V. B. & Black, L. W.(1989). Membrane-associated assembly of a phage T4 DNA entrance vertex structure studied with expression vectors. J Mol Biol 209, 667–681.[CrossRef] [Google Scholar]
  32. Middelboe, M. & Jorgensen, N. O. G.(2006). Viral lysis of bacteria: an important source of dissolved amino acids and cell wall compounds. J Mar Biol Assoc U K 86, 605–612.[CrossRef] [Google Scholar]
  33. Munn, C. B.(2006). Viruses as pathogens of marine organisms – from bacteria to whales. J Mar Biol Assoc U K 86, 453–467.[CrossRef] [Google Scholar]
  34. Nagasaki, K., Tomaru, Y., Takao, Y., Nishida, K., Shirai, Y., Suzuki, H. & Nagumo, T.(2005). Previously unknown virus infects marine diatom. Appl Environ Microbiol 71, 3528–3535.[CrossRef] [Google Scholar]
  35. Newcomb, W. W., Trus, B. L., Booy, F. P., Steven, A. C., Wall, J. S. & Brown, J. C.(1993). Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J Mol Biol 232, 499–511.[CrossRef] [Google Scholar]
  36. Parker, M. L. & Eiserling, F. A.(1983). Bacteriophage SPO1 structure and morphogenesis. I. Tail structure and length regulation. J Virol 46, 239–249. [Google Scholar]
  37. Parker, M. L., Ralston, E. J. & Eiserling, F. A.(1983). Bacteriophage SPO1 structure and morphogenesis. II. Head structure and DNA size. J Virol 46, 250–259. [Google Scholar]
  38. Paul, J. H. & Sullivan, M. B.(2005). Marine phage genomics: what have we learned? Curr Opin Biotechnol 16, 299–307.[CrossRef] [Google Scholar]
  39. Plomp, M., Rice, M. K., Wagner, E. K., McPherson, A. & Malkin, A. J.(2002). Rapid visualization at high resolution of pathogens by atomic force microscopy: structural studies of herpes simplex virus-1. Am J Pathol 160, 1959–1966.[CrossRef] [Google Scholar]
  40. Rocap, G., Distel, D. L., Waterbury, J. B. & Chisholm, S. W.(2002). Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68, 1180–1191.[CrossRef] [Google Scholar]
  41. Spencer, R.(1955). A marine bacteriophage. Nature 175, 690–691.[CrossRef] [Google Scholar]
  42. Sullivan, M. B., Coleman, M. L., Quinlivan, V., Rosenkrantz, J. E., Defrancesco, A. S., Tan, G., Fu, R., Lee, J. A., Waterbury, J. B. & other authors(2008). Portal protein diversity and phage ecology. Environ Microbiol 10, 2810–2823.[CrossRef] [Google Scholar]
  43. Suttle, C.(2005a). Crystal ball. The viriosphere: the greatest biological diversity on Earth and driver of global processes. Environ Microbiol 7, 481–482.[CrossRef] [Google Scholar]
  44. Suttle, C. A.(2005b). Viruses in the sea. Nature 437, 356–361.[CrossRef] [Google Scholar]
  45. Suttle, C. A.(2007). Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5, 801–812.[CrossRef] [Google Scholar]
  46. Tai, V. & Palenik, B.(2009). Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J 3, 903–915.[CrossRef] [Google Scholar]
  47. Weigele, P. R., Pope, W. H., Pedulla, M. L., Houtz, J. M., Smith, A. L., Conway, J. F., King, J., Hatfull, G. F., Lawrence, J. G. & other authors(2007). Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ Microbiol 9, 1675–1695.[CrossRef] [Google Scholar]
  48. Williamson, S. J., Rusch, D. B., Yooseph, S., Halpern, A. L., Heidelberg, K. B., Glass, J. I., Andrews-Pfannkoch, C., Fadrosh, D., Miller, C. S. & other authors(2008). The Sorcerer II global ocean sampling expedition: metagenomic characterization of viruses within aquatic microbial samples. PLoS One 3, e1456.[CrossRef] [Google Scholar]
  49. Wood, W. B. & Crowther, R. A. (editors)(1983).Long Tail Fibers: Genes, Proteins, Assembly and Structure. Washington, DC. : American Society for Microbiology. [Google Scholar]
  50. Xiao, C., Kuznetsov, Y. G., Sun, S., Hafenstein, S. L., Kostyuchenko, V. A., Chipman, P. R., Suzan-Monti, M., Raoult, D., McPherson, A. & other authors(2009). Structural studies of the giant mimivirus. PLoS Biol 7, e92.[CrossRef] [Google Scholar]
  51. Zhong, Y., Chen, F., Wilhelm, S. W., Poorvin, L. & Hodson, R. E.(2002). Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Appl Environ Microbiol 68, 1576–1584.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error