We have studied cell death and its mechanisms in herpes simplex virus type 1 (HSV-1)-infected monocytic cells. The HSV-1 ICP4 and Us3 deletion mutant, d120 caused both apoptosis and necroptosis in d120-infected monocytic cells. At a late time point of infection the number of apoptotic cells was increased significantly in d120-infected cells when compared with uninfected or parental HSV-1 (KOS)-infected cells. Necroptosis inhibitor treatment increased the number of viable cells among the d120-infected cells, indicating that cell death in d120-infected cells was, in part, because of necroptosis. Moreover, lysosomal membrane permeabilization and cathepsin B and H activities were increased significantly in d120-infected cells. Inhibition of cathepsin B and S activities with specific cathepsin inhibitors led to increased cell viability, and inhibition of cathepsin L activity resulted in a decreased number of apoptotic cells. This indicates that cathepsins B, L and S may act as cell-death mediators in d120-infected monocytic cells. In addition, caspase 3 activity was increased significantly in d120-infected cells. However, the caspase 3 inhibitor treatment did not decrease the number of apoptotic cells. In contrast, inhibition of cathepsin L activity by cathepsin L-specific inhibitor clearly decreased caspase 3 activity and the number of apoptotic cells in d120-infected cells. This might suggest that, in d120-infected monocytic cells, cathepsin L activates caspase 3 and thus mediates d120-induced apoptosis. Taken together, these findings suggest that d120-induced cell death is both apoptotic and necroptotic.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ahmed, M., Lock, M., Miller, C. & Fraser, N.(2002). Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol 76, 717–729.[CrossRef] [Google Scholar]
  2. Asano, S., Honda, T., Goshima, F., Nishiyama, Y. & Sugiura, Y.(2000). US3 protein kinase of herpes simplex virus protects primary afferent neurons from virus-induced apoptosis in ICR mice. Neurosci Lett 294, 105–108.[CrossRef] [Google Scholar]
  3. Aubert, M. & Blaho, J. A.(1999). The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. J Virol 73, 2803–2813. [Google Scholar]
  4. Aubert, M. & Blaho, J. A.(2003). Viral oncoapoptosis of human tumor cells. Gene Ther 10, 1437–1445.[CrossRef] [Google Scholar]
  5. Aubert, M., Pomeranz, L. & Blaho, J.(2007). Herpes simplex virus blocks apoptosis by precluding mitochondrial cytochrome c release independent of caspase activation in infected human epithelial cells. Apoptosis 12, 19–35.[CrossRef] [Google Scholar]
  6. Benetti, L. & Roizman, B.(2007). In transduced cells, the US3 protein kinase of herpes simplex virus 1 precludes activation and induction of apoptosis by transfected procaspase 3. J Virol 81, 10242–10248.[CrossRef] [Google Scholar]
  7. Benetti, L., Munger, J. & Roizman, B.(2003). The herpes simplex virus 1 US3 protein kinase blocks caspase-dependent double cleavage and activation of the proapoptotic protein BAD. J Virol 77, 6567–6573.[CrossRef] [Google Scholar]
  8. Blomgran, R., Zheng, L. & Stendahl, O.(2007). Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization. J Leukoc Biol 81, 1213–1223.[CrossRef] [Google Scholar]
  9. Branco, F. J. & Fraser, N. W.(2005). Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J Virol 79, 9019–9025.[CrossRef] [Google Scholar]
  10. Brunk, U. T., Dalen, H., Roberg, K. & Hellquist, H. B.(1997). Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radic Biol Med 23, 616–626.[CrossRef] [Google Scholar]
  11. Bursch, W.(2001). The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8, 569–581.[CrossRef] [Google Scholar]
  12. Cirman, T., Oresić, K., Mazovec, G., Turk, V., Reed, J., Myers, R., Salvesen, G. & Turk, B.(2004). Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279, 3578–3587. [Google Scholar]
  13. Colbert, J. D., Matthews, S. P., Miller, G. & Watts, C.(2009). Diverse regulatory roles for lysosomal proteases in the immune response. Eur J Immunol 39, 2955–2965.[CrossRef] [Google Scholar]
  14. Conus, S. & Simon, H.(2008). Cathepsins: key modulators of cell death and inflammatory responses. Biochem Pharmacol 76, 1374–1382.[CrossRef] [Google Scholar]
  15. Declercq, W., Vanden Berghe, T. & Vandenabeele, P.(2009). RIP kinases at the crossroads of cell death and survival. Cell 138, 229–232.[CrossRef] [Google Scholar]
  16. Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G., Mitchison, T., Moskowitz, M. & Yuan, J.(2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1, 112–119.[CrossRef] [Google Scholar]
  17. DeLuca, N. A., McCarthy, A. M. & Schaffer, P. A.(1985). Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol 56, 558–570. [Google Scholar]
  18. Di Piazza, M., Mader, C., Geletneky, K., Herrero, Y., Calle, M., Weber, E., Schlehofer, J., Deleu, L. & Rommelaere, J.(2007). Cytosolic activation of cathepsins mediates parvovirus H-1-induced killing of cisplatin and TRAIL-resistant glioma cells. J Virol 81, 4186–4198.[CrossRef] [Google Scholar]
  19. Droga-Mazovec, G., Bojic, L., Petelin, A., Ivanova, S., Romih, R., Repnik, U., Salvesen, G., Stoka, V., Turk, V. & Turk, B.(2008). Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem 283, 19140–19150.[CrossRef] [Google Scholar]
  20. Fruh, K., Ahn, K., Djaballah, H., Sempe, P., van Endert, P. M., Tampe, R., Peterson, P. A. & Yang, Y.(1995). A viral inhibitor of peptide transporters for antigen presentation. Nature 375, 415–418.[CrossRef] [Google Scholar]
  21. Galvan, V. & Roizman, B.(1998). Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc Natl Acad Sci U S A 95, 3931–3936.[CrossRef] [Google Scholar]
  22. Ghiasi, H., Osorio, Y., Hedvat, Y., Perng, G. C., Nesburn, A. B. & Wechsler, S. L.(2002). Infection of BALB/c mice with a herpes simplex virus type 1 recombinant virus expressing IFN-γ driven by the LAT promoter. Virology 302, 144–154.[CrossRef] [Google Scholar]
  23. Guicciardi, M. E., Deussing, J., Miyoshi, H., Bronk, S. F., Svingen, P. A., Peters, C., Kaufmann, S. H. & Gores, G. J.(2000). Cathepsin B contributes to TNF-α-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106, 1127–1137.[CrossRef] [Google Scholar]
  24. Guicciardi, M. E., Leist, M. & Gores, G. J.(2004). Lysosomes in cell death. Oncogene 23, 2881–2890.[CrossRef] [Google Scholar]
  25. Hagglund, R., Munger, J., Poon, A. & Roizman, B.(2002). US3 protein kinase of herpes simplex virus 1 blocks caspase 3 activation induced by the products of US 1.5 and UL13 genes and modulates expression of transduced US1.5 open reading frame in a cell type-specific manner. J Virol 76, 743–754.[CrossRef] [Google Scholar]
  26. He, B., Gross, M. & Roizman, B.(1997). The g134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1a to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A 94, 843–848.[CrossRef] [Google Scholar]
  27. Hill, A., Jugovic, P., York, I., Russ, G., Bennink, J., Yewdell, J., Ploegh, H. & Johnson, D.(1995). Herpes simplex virus turns off TAP to evade host immunity. Nature 375, 411–415.[CrossRef] [Google Scholar]
  28. Hsu, K. F., Wu, C. L., Huang, S. C., Wu, C. M., Hsiao, J. R., Yo, Y. T., Chen, Y. H., Shiau, A. L. & Chou, C. Y.(2009). Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells. Autophagy 5, 451–460.[CrossRef] [Google Scholar]
  29. Jerome, K. R., Fox, R., Chen, Z., Sears, A. E., Lee, H. & Corey, L.(1999). Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol 73, 8950–8957. [Google Scholar]
  30. Kirschke, H., Wiederanders, B., Brömme, D. & Rinne, A.(1989). Cathepsin S from bovine spleen. Purification, distribution, intracellular localization and action on proteins. Biochem J 264, 467–473. [Google Scholar]
  31. Koyama, A. H. & Adachi, A.(1997). Induction of apoptosis by herpes simplex virus type 1. J Gen Virol 78, 2909–2912. [Google Scholar]
  32. Koyama, A. H. & Miwa, Y.(1997). Suppression of apoptotic DNA fragmentation in herpes simplex virus type 1-infected cells. J Virol 71, 2567–2571. [Google Scholar]
  33. Kraft, R. M., Nguyen, M. L., Yang, X. H., Thor, A. D. & Blaho, J. A.(2006). Caspase 3 activation during herpes simplex virus 1 infection. Virus Res 120, 163–175.[CrossRef] [Google Scholar]
  34. Laforge, M., Petit, F., Estaquier, J. & Senik, A.(2007). Commitment to apoptosis in CD4+ T lymphocytes productively infected with human immunodeficiency virus type 1 is initiated by lysosomal membrane permeabilization, itself induced by the isolated expression of the viral protein Nef. J Virol 81, 11426–11440.[CrossRef] [Google Scholar]
  35. Leib, D. A., Alexander, D. E., Cox, D., Yin, J. & Ferguson, T. A.(2009). Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses. J Virol 83, 12164–12171.[CrossRef] [Google Scholar]
  36. Leopardi, R. & Roizman, B.(1996). The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc Natl Acad Sci U S A 93, 9583–9587.[CrossRef] [Google Scholar]
  37. Leopardi, R., Van Sant, C. & Roizman, B.(1997). The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proc Natl Acad Sci U S A 94, 7891–7896.[CrossRef] [Google Scholar]
  38. Levine, B. & Deretic, V.(2007). Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7, 767–777.[CrossRef] [Google Scholar]
  39. Li, S., Carpenter, D., Hsiang, C., Wechsler, S. & Jones, C.(2010). Herpes simplex virus type 1 latency-associated transcript inhibits apoptosis and promotes neurite sprouting in neuroblastoma cells following serum starvation by maintaining protein kinase B (AKT) levels. J Gen Virol 91, 858–866.[CrossRef] [Google Scholar]
  40. Munger, J. & Roizman, B.(2001). The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci U S A 98, 10410–10415.[CrossRef] [Google Scholar]
  41. Nguyen, M. L., Kraft, R. M. & Blaho, J. A.(2007). Susceptibility of cancer cells to herpes simplex virus-dependent apoptosis. J Gen Virol 88, 1866–1875.[CrossRef] [Google Scholar]
  42. Oberle, C., Huai, J., Reinheckel, T., Tacke, M., Rassner, M., Ekert, P., Buellesbach, J. & Borner, C.(2010). Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death Differ 17, 1167–1178.[CrossRef] [Google Scholar]
  43. Orvedahl, A. & Levine, B.(2008). Autophagy and viral neurovirulence. Cell Microbiol 10, 1747–1756.[CrossRef] [Google Scholar]
  44. Orvedahl, A., Alexander, D., Tallóczy, Z., Sun, Q., Wei, Y., Zhang, W., Burns, D., Leib, D. & Levine, B.(2007). HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1, 23–35.[CrossRef] [Google Scholar]
  45. Peri, P., Hukkanen, V., Nuutila, K., Saukko, P., Abrahamson, M. & Vuorinen, T.(2007). The cysteine protease inhibitors cystatins inhibit herpes simplex virus type 1-induced apoptosis and virus yield in HEp-2 cells. J Gen Virol 88, 2101–2105.[CrossRef] [Google Scholar]
  46. Peri, P., Mattila, R., Kantola, H., Broberg, E., Karttunen, H., Waris, M., Vuorinen, T. & Hukkanen, V.(2008). Herpes simplex virus type 1 Us3 gene deletion influences Toll-like receptor responses in cultured monocytic cells. Virol J 5, 140.[CrossRef] [Google Scholar]
  47. Perng, G. C., Slanina, S., Yukht, A., Ghiasi, H., Nesburn, A. & Wechsler, S.(2000). The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits. J Virol 74, 1885–1891.[CrossRef] [Google Scholar]
  48. Purves, F. C., Longnecker, R. M., Leader, D. P. & Roizman, B.(1987). Herpes simplex virus 1 protein kinase is encoded by open reading frame US3 which is not essential for virus growth in cell culture. J Virol 61, 2896–2901. [Google Scholar]
  49. Roizman, B., Knipe, D. M. & Whitley, R. J.(2007). Herpes simplex viruses. In Fields Virology, pp. 2501–2601. Edited by Knipe, D. M., Howley, P., Griffin, D., Lamb, R. A., Martin, M. A., Roizman, B. & Straus, S. E.. Philadelphia. : Lippincott Williams & Wilkins. [Google Scholar]
  50. Stoka, V., Turk, B., Schendel, S. L., Kim, T. H., Cirman, T., Snipas, S. J., Ellerby, L. M., Bredesen, D., Freeze, H. & other authors(2001). Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276, 3149–3157.[CrossRef] [Google Scholar]
  51. Tait, S. W. & Green, D. E.(2008). Caspase-independent cell death: leaving the set without the final cut. Oncogene 27, 6452–6461.[CrossRef] [Google Scholar]
  52. Thompson, R. L. & Sawtell, N. M.(2001). Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 75, 6660–6675.[CrossRef] [Google Scholar]
  53. Tokano, Y., Morimoto, S., Hishikawa, T., Murashima, A., Abe, M., Sekigawa, I., Takasaki, Y., Hashimoto, H., Okumura, K. & other authors(1997). Subsets of activated T cells in patients with systemic lupus erythematosus: the relation to cell cycle. Scand J Rheumatol 26, 37–42.[CrossRef] [Google Scholar]
  54. Turk, B., Dolenc, I., Turk, V. & Bieth, J.(1993). Kinetics of the pH-induced inactivation of human cathepsin L. Biochemistry 32, 375–380.[CrossRef] [Google Scholar]
  55. Turk, B., Stoka, V., Rozman-Pungercar, J., Cirman, T., Droga-Mazovec, G., Oresić, K. & Turk, V.(2002). Apoptotic pathways: involvement of lysosomal proteases. Biol Chem 383, 1035–1044. [Google Scholar]
  56. Uchiyama, Y.(2001). Autophagic cell death and its execution by lysosomal cathepsins. Arch Histol Cytol 64, 233–246.[CrossRef] [Google Scholar]
  57. Upton, J. W., Kaiser, W. J. & Mocarski, E. S.(2010). Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7, 302–313.[CrossRef] [Google Scholar]
  58. Yamashima, T. & Oikawa, S.(2009). The role of lysosomal rupture in neuronal death. Prog Neurobiol 89, 343–358.[CrossRef] [Google Scholar]
  59. Zhang, H., Zhong, C., Shi, L., Guo, Y. & Fan, Z.(2009). Granulysin induces cathepsin B release from lysosomes of target tumor cells to attack mitochondria through processing of bid leading to necroptosis. J Immunol 182, 6993–7000.[CrossRef] [Google Scholar]
  60. Zhao, M., Eaton, J. & Brunk, U.(2001). Bcl-2 phosphorylation is required for inhibition of oxidative stress-induced lysosomal leak and ensuing apoptosis. FEBS Lett 509, 405–412.[CrossRef] [Google Scholar]
  61. Zhou, G., Galvan, V., Campadelli-Fiume, G. & Roizman, B.(2000). Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins. J Virol 74, 11782–11791.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error