Bovine parvovirus uses clathrin-mediated endocytosis for cell entry Free

Abstract

Entry events of bovine parvovirus (BPV) were studied. Transmission electron micrographs of infected cells showed virus particles in cytoplasmic vesicles. Chemical inhibitors that block certain aspects of the cellular machinery were employed to assess viral dependency upon those cellular processes. Chlorpromazine, ammonium chloride, chloroquine and bafilamicin A1 were used to inhibit acidification of endosomes and clathrin-associated endocytosis. Nystatin was used as an inhibitor of the caveolae pathway. Cytochalasin D and ML-7 were used to inhibit actin and myosin functions, respectively. Nocodazole and colchicine were employed to inhibit microtubule activity. Virus entry was assessed by measuring viral transcription using real-time PCR, synthesis of capsid protein and assembly of infectious progeny virus in the presence of inhibitor blockage. The results indicated that BPV entry into embryonic bovine trachael cells utilizes endocytosis in clathrin-coated vesicles, is dependent upon acidification, and appears to be associated with actin and microtubule dependency. Evidence for viral entry through caveolae was not obtained. These findings provide a fuller understanding of the early cell-entry events of the replication cycle for members of the genus .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.024133-0
2010-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/12/3032.html?itemId=/content/journal/jgv/10.1099/vir.0.024133-0&mimeType=html&fmt=ahah

References

  1. Abdel-Latif, L., Murray, B. K., Renberg, R. L., O'Neill, K. L., Porter, H., Jensen, J. B. & Johnson, F. B.(2006). Cell death in parvovirus-infected embryonic bovine tracheal cells is mediated by necrosis rather than apoptosis. J Gen Virol 87, 2539–2548.[CrossRef] [Google Scholar]
  2. Abinanti, F. R. & Warfield, M. S.(1961). Recovery of a hemadsorbing virus (HADEN) from the gastrointestinal tract of calves. Virology 14, 288–289.[CrossRef] [Google Scholar]
  3. Basak, S. & Compans, R. W.(1989). Polarized entry of canine parvovirus in an epithelial cell line. J Virol 63, 3164–3167. [Google Scholar]
  4. Basak, S. & Turner, H.(1992). Infectious entry pathway for canine parvovirus. Virology 186, 368–376.[CrossRef] [Google Scholar]
  5. Blackburn, S. D., Cline, S. E., Hemming, J. P. & Johnson, F. B.(2005). Attachment of bovine parvovirus to O-linked alpha 2,3 neuraminic acid on glycophorin A. Arch Virol 150, 1477–1484.[CrossRef] [Google Scholar]
  6. Blackburn, S. D., Steadman, R. A. & Johnson, F. B.(2006). Attachment of adeno-associated virus type 3H to fibroblast growth receptor 1. Arch Virol 151, 617–623.[CrossRef] [Google Scholar]
  7. Blanchard, E., Belouzard, S., Goueslain, L., Wakita, T., Dubuisson, J., Wychowski, C. & Rouille, Y.(2006). Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol 80, 6964–6972.[CrossRef] [Google Scholar]
  8. Brindley, M. A. & Maury, W.(2008). Equine infectious anemia virus entry occurs through clathrin-mediated endocytosis. J Virol 82, 1628–1637.[CrossRef] [Google Scholar]
  9. Chu, J. J. H. & Ng, M. L.(2004). Infectious entry of West Nile virus occurs through a clathrin mediated endocytic pathway. J Virol 78, 10543–10555.[CrossRef] [Google Scholar]
  10. Cohen, S., Behzad, A. R., Carroll, J. B. & Pante, N.(2006). Parvoviral nuclear import: bypassing the host nuclear-transport machinery. J Gen Virol 87, 3209–3213.[CrossRef] [Google Scholar]
  11. Cotmore, S. F. & Tattersall, P.(2007). Parvoviral host range and cell entry mechanisms. Adv Virus Res 70, 183–232. [Google Scholar]
  12. Damm, E.-M. & Pelkmans, L.(2006). Systems biology of virus entry in mammalian cells. Cell Microbiol 8, 1219–1227.[CrossRef] [Google Scholar]
  13. Dimitrov, D. S.(2004). Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol 2, 109–122.[CrossRef] [Google Scholar]
  14. Dorsch, S., Liebisch, G., Kaufmann, B., von Landenberg, P., Hoffmann, J. H., Dronik, W. & Sodeik, B.(2002). The VP1 unique region of parvovirus B19 and its constituent phospholipase A2-like activity. J Virol 76, 2014–2018.[CrossRef] [Google Scholar]
  15. Douar, A. M., Poulard, K., Stockholm, D. & Danos, O.(2001). Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol 75, 1824–1833.[CrossRef] [Google Scholar]
  16. Edeling, M. A., Smith, C. & Owen, D.(2006). Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 7, 32–44.[CrossRef] [Google Scholar]
  17. Ehrlich, M., Boll, W., van Oijen, A., Hariharan, R., Chandran, K., Nibert, M. L. & Kirchhausen, T.(2004). Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605.[CrossRef] [Google Scholar]
  18. Farr, G. A., Zang, L.-G. & Tattersall, P.(2005). Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc Natl Acad Sci U S A 102, 17148–17153.[CrossRef] [Google Scholar]
  19. Harbison, C. E., Chiorini, J. A. & Parrish, C. R.(2008). The parvovirus capsid odyssey: from the cell surface to the nucleus. Trends Microbiol 16, 208–214.[CrossRef] [Google Scholar]
  20. Johnson, F. B. & Hoggan, M. D.(1973). Structural proteins of HADEN virus. Virology 51, 129–137.[CrossRef] [Google Scholar]
  21. Johnson, F. B., Fenn, L. B., Owens, T. J., Faucheux, L. J. & Blackburn, S. D.(2004). Attachment of bovine parvovirus to sialic acids on bovine cell membranes. J Gen Virol 85, 2199–2207.[CrossRef] [Google Scholar]
  22. Leopold, P. L. & Crystal, R. G.(2007). Intracellular trafficking of adenovirus: many means to many ends. Adv Drug Deliv Rev 59, 810–821.[CrossRef] [Google Scholar]
  23. Luker, G., Chow, C., Richards, D. F. & Johnson, F. B.(1991). Suitability of infection of cells in suspension for detection of herpes simplex virus. J Clin Microbiol 29, 1554–1557. [Google Scholar]
  24. Mani, B., Baltzer, C., Valle, N., Almendral, J. A., Kempf, C. & Ros, C.(2006). Low pH-dependent endosomal processing of the incoming parvovirus minute virus of mice virion leads to externalization of the VP1 N-terminal sequence (N-VP1), N-VP2 cleavage, and uncoating of the full-length genome. J Virol 80, 1015–1024.[CrossRef] [Google Scholar]
  25. Marsh, M. & Helenius, A.(1989). Virus entry into animal cells. Adv Virus Res 36, 107–151. [Google Scholar]
  26. Marsh, M. & Helenius, A.(2006). Virus entry: open sesame. Cell 124, 729–740.[CrossRef] [Google Scholar]
  27. Matveev, S., Li, X., Everson, W. & Smart, E. J.(2001). The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking. Adv Drug Deliv Rev 49, 237–250.[CrossRef] [Google Scholar]
  28. Meier, O., Boucke, K., Hammer, S. V., Keller, S., Stidwill, R. P., Hemmi, S. & Greber, U. F.(2002). Adenovirus triggers macropynocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 158, 1119–1131.[CrossRef] [Google Scholar]
  29. Merrifield, C. J., Moss, S. E., Ballestrem, C., Imhof, B. A., Giese, G., Wunderlich, I. & Almers, W.(1999). Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nat Cell Biol 1, 72–74.[CrossRef] [Google Scholar]
  30. Parker, J. S. & Parrish, C. R.(2000). Cellular uptake and infection by canine parvovirus involves rapid dynamin-regulated clathrin-mediated endocytosis, followed by slower intracellular trafficking. J Virol 74, 1919–1930.[CrossRef] [Google Scholar]
  31. Qiu, J., Cheng, F., Johnson, F. B. & Pintel, D.(2007). The transcription profile of the Bocavirus bovine parvovirus is unlike those of previously characterized parvoviruses. J Virol 81, 12080–12085.[CrossRef] [Google Scholar]
  32. Ros, C., Burckhardt, C. J. & Kempf, C.(2002). Cytoplasmic trafficking of minute virus of mice: low-pH requirement, routing to late endosomes and proteasome interaction. J Virol 76, 12634–12645.[CrossRef] [Google Scholar]
  33. Sieczkarski, S. B. & Whittaker, G. R.(2002). Dissecting virus entry via endocytosis. J Gen Virol 83, 1535–1545. [Google Scholar]
  34. Smith, A. E. & Helenius, A.(2004). How viruses enter animal cells. Science 304, 237–242.[CrossRef] [Google Scholar]
  35. Stuart, A. D. & Brown, D. K. T.(2006). Entry of feline calicivirus is dependent on clathrin-mediated endocytosis and acidification in endosomes. J Virol 80, 7500–7509.[CrossRef] [Google Scholar]
  36. Sun, Y., Chen, A. Y., Cheng, F., Guan, W., Johnson, F. B. & Qiu, J.(2009). Molecular characterization of infectious clones of the minute virus of canines reveals unique features of bocaviruses. J Virol 83, 3956–3967.[CrossRef] [Google Scholar]
  37. Thacker, T. C. & Johnson, F. B.(1998). Binding of bovine parvovirus to erythrocyte membrane sialylglycoproteins. J Gen Virol 79, 2163–2169. [Google Scholar]
  38. Vendeville, A., Ravallec, M., Jousset, F. X., Devise, M., Mutuel, D., Lopez-Ferber, M., Fournier, P., Dupressoir, T. & Ogliastro, M.(2009). Densovirus infectious pathway requires clathrin-mediated endocytosis followed by trafficking to the nucleus. J Virol 83, 4678–4689.[CrossRef] [Google Scholar]
  39. Vihinen-Ranta, M., Wang, D., Weichert, W. S. & Parrish, C. R.(2002). The VP1 N-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection. J Virol 76, 1884–1891.[CrossRef] [Google Scholar]
  40. Vihinen-Ranta, M., Suikkanen, S. & Parrish, C. R.(2004). Pathways of cell infection by parvoviruses and adeno-associated viruses. J Virol 78, 6709–6714.[CrossRef] [Google Scholar]
  41. Wilson, L. & Meza, I.(1973). The mechanism of action of colchicine. Colchicine binding properties of sea urchin sperm tail outer doublet tubulin. J Cell Biol 58, 709–719.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.024133-0
Loading
/content/journal/jgv/10.1099/vir.0.024133-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed