1887

Abstract

Gammaherpesviruses are archetypal pathogenic persistent viruses. The known human gammaherpesviruses (Epstein–Barr virus and Kaposi's sarcoma-associated herpesvirus) are host-specific and therefore lack a convenient infection model. This makes related animal gammaherpesviruses an important source of information. Infection by murid herpesvirus 4 (MuHV-4), a virus originally isolated from bank voles (), was studied here. MuHV-4 infection of inbred laboratory mouse strains () is commonly used as a general model of gammaherpesvirus pathogenesis. However, MuHV-4 has not been isolated from house mice, and no systematic comparison has been made between experimental MuHV-4 infections of mice and bank voles. This study therefore characterized MuHV-4 (strain MHV-68) infection of bank voles through global luciferase imaging and classical virological methods. As in mice, intranasal virus inoculation led to productive replication in bank vole lungs, accompanied by massive cellular infiltrates. However, the extent of lytic virus replication was approximately 1000-fold lower in bank voles than in mice. Peak latency titres in lymphoid tissue were also lower, although latency was still established. Finally, virus transmission was tested between animals maintained in captivity. However, as observed in mice, MuHV-4 was not transmitted between voles under these conditions. In conclusion, this study revealed that, despite quantitative differences, replication and the latency sites of MuHV-4 are comparable in bank voles and mice. Therefore, it appears that, so far, represents a suitable host for studying gammaherpesvirus pathogenesis with MuHV-4. Establishing transmission conditions in captivity will be a vital step for further research in this field.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.023481-0
2010-10-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/10/2553.html?itemId=/content/journal/jgv/10.1099/vir.0.023481-0&mimeType=html&fmt=ahah

References

  1. Blasdell, K., McCracken, C., Morris, A., Nash, A. A., Begon, M., Bennett, M. & Stewart, J. P. ( 2003; ). The wood mouse is a natural host for Murid herpesvirus 4. J Gen Virol 84, 111–113.[CrossRef]
    [Google Scholar]
  2. Blaskovic, D., Stancekova, M., Svobodova, J. & Mistrikova, J. ( 1980; ). Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol 24, 468.
    [Google Scholar]
  3. Chastel, C., Beaucournu, J. P., Chastel, O., Legrand, M. C. & Le Goff, F. ( 1994; ). A herpesvirus from an European shrew (Crocidura russula). Acta Virol 38, 309.
    [Google Scholar]
  4. Coleman, H. M., de Lima, B., Morton, V. & Stevenson, P. G. ( 2003; ). Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77, 2410–2417.[CrossRef]
    [Google Scholar]
  5. Davison, A. J. ( 2002; ). Evolution of the herpesviruses. Vet Microbiol 86, 69–88.[CrossRef]
    [Google Scholar]
  6. Davison, A. J., Eberle, R., Ehlers, B., Hayward, G. S., McGeoch, D. J., Minson, A. C., Pellett, P. E., Roizman, B., Studdert, M. J. & other authors ( 2009; ). The order Herpesvirales. Arch Virol 154, 171–177.[CrossRef]
    [Google Scholar]
  7. Dewals, B., Boudry, C., Gillet, L., Markine-Goriaynoff, N., de Leval, L., Haig, D. M. & Vanderplasschen, A. ( 2006; ). Cloning of the genome of Alcelaphine herpesvirus 1 as an infectious and pathogenic bacterial artificial chromosome. J Gen Virol 87, 509–517.[CrossRef]
    [Google Scholar]
  8. Ehlers, B., Dural, G., Yasmum, N., Lembo, T., de Thoisy, B., Ryser-Degiorgis, M. P., Ulrich, R. G. & McGeoch, D. J. ( 2008; ). Novel mammalian herpesviruses and lineages within the Gammaherpesvirinae: cospeciation and interspecies transfer. J Virol 82, 3509–3516.[CrossRef]
    [Google Scholar]
  9. El-Gogo, S., Flach, B., Staib, C., Sutter, G. & Adler, H. ( 2008; ). In vivo attenuation of recombinant murine gammaherpesvirus 68 (MHV-68) is due to the expression and immunogenicity but not to the insertion of foreign sequences. Virology 380, 322–327.[CrossRef]
    [Google Scholar]
  10. Fickenscher, H. & Fleckenstein, B. ( 2001; ). Herpesvirus saimiri. Philos Trans R Soc Lond B Biol Sci 356, 545–567.[CrossRef]
    [Google Scholar]
  11. Flano, E., Kim, I. J., Woodland, D. L. & Blackman, M. A. ( 2002; ). Gamma-herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196, 1363–1372.[CrossRef]
    [Google Scholar]
  12. Gaspar, M., Gill, M. B., Losing, J. B., May, J. S. & Stevenson, P. G. ( 2008; ). Multiple functions for ORF75c in murid herpesvirus-4 infection. PLoS One 3, e2781.[CrossRef]
    [Google Scholar]
  13. Gillet, L. & Stevenson, P. G. ( 2007; ). Antibody evasion by the N terminus of murid herpesvirus-4 glycoprotein B. EMBO J 26, 5131–5142.[CrossRef]
    [Google Scholar]
  14. Gillet, L., May, J. S., Colaco, S. & Stevenson, P. G. ( 2007a; ). The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization. PLoS One 2, e705.[CrossRef]
    [Google Scholar]
  15. Gillet, L., May, J. S., Colaco, S. & Stevenson, P. G. ( 2007b; ). Glycoprotein L disruption reveals two functional forms of the murine gammaherpesvirus 68 glycoprotein H. J Virol 81, 280–291.[CrossRef]
    [Google Scholar]
  16. Gillet, L., Colaco, S. & Stevenson, P. G. ( 2008a; ). Glycoprotein B switches conformation during murid herpesvirus 4 entry. J Gen Virol 89, 1352–1363.[CrossRef]
    [Google Scholar]
  17. Gillet, L., Colaco, S. & Stevenson, P. G. ( 2008b; ). The Murid herpesvirus-4 gL regulates an entry-associated conformation change in gH. PLoS One 3, e2811.[CrossRef]
    [Google Scholar]
  18. Hart, J., Ackermann, M., Jayawardane, G., Russell, G., Haig, D. M., Reid, H. & Stewart, J. P. ( 2007; ). Complete sequence and analysis of the ovine herpesvirus 2 genome. J Gen Virol 88, 28–39.[CrossRef]
    [Google Scholar]
  19. Hughes, D. J., Kipar, A., Sample, J. T. & Stewart, J. P. ( 2010a; ). Pathogenesis of a model gammaherpesvirus in a natural host. J Virol 84, 3949–3961.[CrossRef]
    [Google Scholar]
  20. Hughes, D. J., Kipar, A., Milligan, S. G., Cunningham, C., Sanders, M., Quail, M. A., Rajandream, M. A., Efstathiou, S., Bowden, R. J. & other authors ( 2010b; ). Characterization of a novel wood mouse virus related to murid herpesvirus 4. J Gen Virol 91, 867–879.[CrossRef]
    [Google Scholar]
  21. May, J. S., Coleman, H. M., Smillie, B., Efstathiou, S. & Stevenson, P. G. ( 2004; ). Forced lytic replication impairs host colonization by a latency-deficient mutant of murine gammaherpesvirus-68. J Gen Virol 85, 137–146.[CrossRef]
    [Google Scholar]
  22. McGeoch, D. J. ( 2001; ). Molecular evolution of the γ-Herpesvirinae. Philos Trans R Soc Lond B Biol Sci 356, 421–435.[CrossRef]
    [Google Scholar]
  23. McGeoch, D. J., Dolan, A. & Ralph, A. C. ( 2000; ). Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol 74, 10401–10406.[CrossRef]
    [Google Scholar]
  24. McGeoch, D. J., Gatherer, D. & Dolan, A. ( 2005; ). On phylogenetic relationships among major lineages of the Gammaherpesvirinae. J Gen Virol 86, 307–316.[CrossRef]
    [Google Scholar]
  25. McGeoch, D. J., Rixon, F. J. & Davison, A. J. ( 2006; ). Topics in herpesvirus genomics and evolution. Virus Res 117, 90–104.[CrossRef]
    [Google Scholar]
  26. Michaux, J., Reyes, A. & Catzeflis, F. ( 2001; ). Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents. Mol Biol Evol 18, 2017–2031.[CrossRef]
    [Google Scholar]
  27. Michaux, J. R., Chevret, P., Filippucci, M. G. & Macholan, M. ( 2002; ). Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA. Mol Phylogenet Evol 23, 123–136.[CrossRef]
    [Google Scholar]
  28. Milho, R., Smith, C. M., Marques, S., Alenquer, M., May, J. S., Gillet, L., Gaspar, M., Efstathiou, S., Simas, J. P. & other authors ( 2009; ). In vivo imaging of murid herpesvirus-4 infection. J Gen Virol 90, 21–32.[CrossRef]
    [Google Scholar]
  29. Mistrikova, J., Kozuch, O., Klempa, B., Kontsekova, E., Labuda, M. & Mrmusova, M. ( 2000; ). New findings on the ecology and epidemiology of murine herpes virus isolated in Slovakia. Bratisl Lek Listy 101, 157–162 (in Slovak ).
    [Google Scholar]
  30. Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A. & O'Brien, S. J. ( 2001; ). Molecular phylogenetics and the origins of placental mammals. Nature 409, 614–618.[CrossRef]
    [Google Scholar]
  31. Nash, A. A., Dutia, B. M., Stewart, J. P. & Davison, A. J. ( 2001; ). Natural history of murine gamma-herpesvirus infection. Philos Trans R Soc Lond B Biol Sci 356, 569–579.[CrossRef]
    [Google Scholar]
  32. Rosa, G. T., Gillet, L., Smith, C. M., de Lima, B. D. & Stevenson, P. G. ( 2007; ). IgG Fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. PLoS One 2, e560.[CrossRef]
    [Google Scholar]
  33. Sadowska, E. T., Baliga-Klimczyk, K., Chrzascik, K. M. & Koteja, P. ( 2008; ). Laboratory model of adaptative radiation: a selection experiment in the bank vole. Physiol Biochem Zool 81, 627–640.[CrossRef]
    [Google Scholar]
  34. Stevenson, P. G., Belz, G. T., Castrucci, M. R., Altman, J. D. & Doherty, P. C. ( 1999; ). A gamma-herpesvirus sneaks through a CD8+ T cell response primed to a lytic-phase epitope. Proc Natl Acad Sci U S A 96, 9281–9286.[CrossRef]
    [Google Scholar]
  35. Sunil-Chandra, N. P., Efstathiou, S., Arno, J. & Nash, A. A. ( 1992; ). Virological and pathological features of mice infected with murine gamma-herpesvirus 68. J Gen Virol 73, 2347–2356.[CrossRef]
    [Google Scholar]
  36. Sunil-Chandra, N. P., Arno, J., Fazakerley, J. & Nash, A. A. ( 1994; ). Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol 145, 818–826.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.023481-0
Loading
/content/journal/jgv/10.1099/vir.0.023481-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2553–2563

IVIS spectrum sensitivity in [ PDF] (1.2 MB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error