1887

Abstract

ORF73 orthologues encoded by different rhadinoviruses have been studied extensively. These studies revealed that the ORF73 expression product (pORF73) is a multifunctional protein essential for latency that enables episome tethering to mitotic chromosomes and modulates cellular pathways implicated in growth and survival of latently infected cells. Comparison of pORF73 orthologues encoded by rhadinoviruses reveals important variations in amino acid sequence length and composition. Bovine herpesvirus 4 (BoHV-4) encodes by far the shortest ORF73 orthologue, with a size equivalent to only 22 % of that of the largest orthologues. The present study focused on determining whether BoHV-4 ORF73 is a bona fide gene and investigating whether it is essential for latency, as established for larger ORF73 orthologues. Our results demonstrate that BoHV-4 ORF73 is transcribed as immediate-early polycistronic mRNA together with ORF71. Using a BoHV-4 bacterial artificial chromosome clone, we produced a strain deleted for ORF73 and a revertant strain. Deletion of BoHV-4 ORF73 did not affect the capacity of the virus to replicate , but it prevented latent infection using a rabbit model. Interestingly, the strain deleted for ORF73 induced an anti-BoHV-4 humoral immune response comparable to that elicited by the wild type and revertant recombinants. Together, these results demonstrate that, despite its relatively small size, BoHV-4 ORF73 is a functional homologue of larger rhadinovirus ORF73 orthologues, and highlight the potential of ORF73 deletion for the development of BoHV-4 as a vector in vaccinology.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.023192-0
2010-10-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/10/2574.html?itemId=/content/journal/jgv/10.1099/vir.0.023192-0&mimeType=html&fmt=ahah

References

  1. Ballestas, M. E., Chatis, P. A. & Kaye, K. M. ( 1999; ). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641–644.[CrossRef]
    [Google Scholar]
  2. Barbera, A. J., Chodaparambil, J. V., Kelley-Clarke, B., Joukov, V., Walter, J. C., Luger, K. & Kaye, K. M. ( 2006; ). The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA. Science 311, 856–861.[CrossRef]
    [Google Scholar]
  3. Bennett, N. J., May, J. S. & Stevenson, P. G. ( 2005; ). Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol 3, e120.[CrossRef]
    [Google Scholar]
  4. Boudry, C., Markine-Goriaynoff, N., Delforge, C., Springael, J. Y., de Leval, L., Drion, P., Russell, G., Haig, D. M., Vanderplasschen, A. F. & Dewals, B. ( 2007; ). The A5 gene of alcelaphine herpesvirus 1 encodes a constitutively active G-protein-coupled receptor that is non-essential for the induction of malignant catarrhal fever in rabbits. J Gen Virol 88, 3224–3233.[CrossRef]
    [Google Scholar]
  5. Cai, X., Lu, S., Zhang, Z., Gonzalez, C. M., Damania, B. & Cullen, B. R. ( 2005; ). Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A 102, 5570–5575.[CrossRef]
    [Google Scholar]
  6. Calderwood, M., White, R. E., Griffiths, R. A. & Whitehouse, A. ( 2005; ). Open reading frame 73 is required for herpesvirus saimiri A11-S4 episomal persistence. J Gen Virol 86, 2703–2708.[CrossRef]
    [Google Scholar]
  7. Coleman, H. M., Efstathiou, S. & Stevenson, P. G. ( 2005; ). Transcription of the murine gammaherpesvirus 68 ORF73 from promoters in the viral terminal repeats. J Gen Virol 86, 561–574.[CrossRef]
    [Google Scholar]
  8. Costes, B., Fournier, G., Michel, B., Delforge, C., Raj, V. S., Dewals, B., Gillet, L., Drion, P., Body, A. & other authors ( 2008; ). Cloning of the koi herpesvirus genome as an infectious bacterial artificial chromosome demonstrates that disruption of the thymidine kinase locus induces partial attenuation in Cyprinus carpio koi. J Virol 82, 4955–4964.[CrossRef]
    [Google Scholar]
  9. Dewals, B., Thirion, M., Markine-Goriaynoff, N., Gillet, L., de Fays, K., Minner, F., Daix, V., Sharp, P. M. & Vanderplasschen, A. ( 2006; ). Evolution of bovine herpesvirus 4: recombination and transmission between African buffalo and cattle. J Gen Virol 87, 1509–1519.[CrossRef]
    [Google Scholar]
  10. Dewals, B., Boudry, C., Farnir, F., Drion, P.-V. & Vanderplasschen, A. ( 2008; ). Malignant catarrhal fever induced by alcelaphine herpesvirus 1 is associated with proliferation of CD8+ T cells supporting a latent infection. PLoS ONE 3, e1627.[CrossRef]
    [Google Scholar]
  11. Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A. & Ganem, D. ( 1998; ). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J Virol 72, 8309–8315.
    [Google Scholar]
  12. Donofrio, G. & van Santen, V. L. ( 2001; ). A bovine macrophage cell line supports bovine herpesvirus-4 persistent infection. J Gen Virol 82, 1181–1185.
    [Google Scholar]
  13. Donofrio, G., Cavirani, S., Vanderplasschen, A., Gillet, L. & Flammini, C. F. ( 2006; ). Recombinant bovine herpesvirus 4 (BoHV-4) expressing glycoprotein D of BoHV-1 is immunogenic and elicits serum-neutralizing antibodies against BoHV-1 in a rabbit model. Clin Vaccine Immunol 13, 1246–1254.[CrossRef]
    [Google Scholar]
  14. Ebrahimi, B., Dutia, B. M., Roberts, K. L., Garcia-Ramirez, J. J., Dickinson, P., Stewart, J. P., Ghazal, P., Roy, D. J. & Nash, A. A. ( 2003; ). Transcriptome profile of murine gammaherpesvirus-68 lytic infection. J Gen Virol 84, 99–109.[CrossRef]
    [Google Scholar]
  15. Fowler, P. & Efstathiou, S. ( 2004; ). Vaccine potential of a murine gammaherpesvirus-68 mutant deficient for ORF73. J Gen Virol 85, 609–613.[CrossRef]
    [Google Scholar]
  16. Fowler, P., Marques, S., Simas, J. P. & Efstathiou, S. ( 2003; ). ORF73 of murine herpesvirus-68 is critical for the establishment and maintenance of latency. J Gen Virol 84, 3405–3416.[CrossRef]
    [Google Scholar]
  17. Friborg, J., Jr, Kong, W., Hottiger, M. O. & Nabel, G. J. ( 1999; ). p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402, 889–894.
    [Google Scholar]
  18. Gillet, L., Daix, V., Donofrio, G., Wagner, M., Koszinowski, U. H., China, B., Ackermann, M., Markine-Goriaynoff, N. & Vanderplasschen, A. ( 2005; ). Development of bovine herpesvirus 4 as an expression vector using bacterial artificial chromosome cloning. J Gen Virol 86, 907–917.[CrossRef]
    [Google Scholar]
  19. Gillet, L., Schroeder, H., Mast, J., Thirion, M., Renauld, J. C., Dewals, B. & Vanderplasschen, A. ( 2009; ). Anchoring tick salivary anticomplement proteins IRAC I and IRAC II to membrane increases their immunogenicity. Vet Res 40, 51.[CrossRef]
    [Google Scholar]
  20. Krithivas, A., Young, D. B., Liao, G., Greene, D. & Hayward, S. D. ( 2000; ). Human herpesvirus 8 LANA interacts with proteins of the mSin3 corepressor complex and negatively regulates Epstein–Barr virus gene expression in dually infected PEL cells. J Virol 74, 9637–9645.[CrossRef]
    [Google Scholar]
  21. Lan, K., Kuppers, D. A., Verma, S. C. & Robertson, E. S. ( 2004; ). Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol 78, 6585–6594.[CrossRef]
    [Google Scholar]
  22. Lan, K., Kuppers, D. A., Verma, S. C., Sharma, N., Murakami, M. & Robertson, E. S. ( 2005; ). Induction of Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen by the lytic transactivator RTA: a novel mechanism for establishment of latency. J Virol 79, 7453–7465.[CrossRef]
    [Google Scholar]
  23. Li, M., Lee, H., Yoon, D. W., Albrecht, J. C., Fleckenstein, B., Neipel, F. & Jung, J. U. ( 1997; ). Kaposi's sarcoma-associated herpesvirus encodes a functional cyclin. J Virol 71, 1984–1991.
    [Google Scholar]
  24. Li, H., Gailbreath, K., Flach, E. J., Taus, N. S., Cooley, J., Keller, J., Russell, G. C., Knowles, D. P., Haig, D. M. & other authors ( 2005; ). A novel subgroup of rhadinoviruses in ruminants. J Gen Virol 86, 3021–3026.[CrossRef]
    [Google Scholar]
  25. Lim, C., Gwack, Y., Hwang, S., Kim, S. & Choe, J. ( 2001; ). The transcriptional activity of cAMP response element-binding protein-binding protein is modulated by the latency associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Biol Chem 276, 31016–31022.[CrossRef]
    [Google Scholar]
  26. Lu, F., Day, L., Gao, S. J. & Lieberman, P. M. ( 2006; ). Acetylation of the latency-associated nuclear antigen regulates repression of Kaposi's sarcoma-associated herpesvirus lytic transcription. J Virol 80, 5273–5282.[CrossRef]
    [Google Scholar]
  27. Markine-Goriaynoff, N., Georgin, J. P., Goltz, M., Zimmermann, W., Broll, H., Wamwayi, H. M., Pastoret, P. P., Sharp, P. M. & Vanderplasschen, A. ( 2003; ). The core 2 β-1,6-N-acetylglucosaminyltransferase-mucin encoded by bovine herpesvirus 4 was acquired from an ancestor of the African buffalo. J Virol 77, 1784–1792.[CrossRef]
    [Google Scholar]
  28. Martinez-Guzman, D., Rickabaugh, T., Wu, T. T., Brown, H., Cole, S., Song, M. J., Tong, L. & Sun, R. ( 2003; ). Transcription program of murine gammaherpesvirus 68. J Virol 77, 10488–10503.[CrossRef]
    [Google Scholar]
  29. Moorman, N. J., Willer, D. O. & Speck, S. H. ( 2003; ). The gammaherpesvirus 68 latency-associated nuclear antigen homolog is critical for the establishment of splenic latency. J Virol 77, 10295–10303.[CrossRef]
    [Google Scholar]
  30. Naeem, K., Caywood, D. D., Werdin, R. E. & Goyal, S. M. ( 1990; ). Evaluation of pregnant rabbits as a laboratory model for bovid herpesvirus-4 infection. Am J Vet Res 51, 640–644.
    [Google Scholar]
  31. Osorio, F. A., Reed, D. E. & Rock, D. L. ( 1982; ). Experimental infection of rabbits with bovine herpesvirus-4: acute and persistent infection. Vet Microbiol 7, 503–513.[CrossRef]
    [Google Scholar]
  32. Radkov, S. A., Kellam, P. & Boshoff, C. ( 2000; ). The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6, 1121–1127.[CrossRef]
    [Google Scholar]
  33. Renne, R., Barry, C., Dittmer, D., Compitello, N., Brown, P. O. & Ganem, D. ( 2001; ). Modulation of cellular and viral gene expression by the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Virol 75, 458–468.[CrossRef]
    [Google Scholar]
  34. Roizman, B. & Pellett, P. E. ( 2007; ). The Family Herpesviridae: a Brief Introduction. Philadelphia, PA. : Lippincott Williams & Wilkins.
    [Google Scholar]
  35. Sambrook, J. & Russell, D. W. ( 2001; ). Extraction, purification and analysis of mRNA from eukaryotic cells. In Molecular Cloning: a Laboratory Manual, 3rd edn, pp. 7.1–7.45. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  36. Sarid, R., Flore, O., Bohenzky, R. A., Chang, Y. & Moore, P. S. ( 1998; ). Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol 72, 1005–1012.
    [Google Scholar]
  37. Sarid, R., Wiezorek, J. S., Moore, P. S. & Chang, Y. ( 1999; ). Characterization and cell cycle regulation of the major Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) latent genes and their promoter. J Virol 73, 1438–1446.
    [Google Scholar]
  38. Stabel, J. R. & Stabel, T. J. ( 1995; ). Immortalization and characterization of bovine peritoneal macrophages transfected with SV40 plasmid DNA. Vet Immunol Immunopathol 45, 211–220.[CrossRef]
    [Google Scholar]
  39. Talbot, S. J., Weiss, R. A., Kellam, P. & Boshoff, C. ( 1999; ). Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology 257, 84–94.[CrossRef]
    [Google Scholar]
  40. Thiry, E., Bublot, M., Dubuisson, J., Van Bressem, M. F., Lequarre, A. S., Lomonte, P., Vanderplasschen, A. & Pastoret, P. P. ( 1992; ). Molecular biology of bovine herpesvirus type 4. Vet Microbiol 33, 79–92.[CrossRef]
    [Google Scholar]
  41. Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, F., Mattmann, C., Burns, K., Bodmer, J. L. & other authors ( 1997; ). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–521.[CrossRef]
    [Google Scholar]
  42. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  43. Vanderplasschen, A., Bublot, M., Pastoret, P. P. & Thiry, E. ( 1993; ). Restriction maps of the DNA of cervid herpesvirus 1 and cervid herpesvirus 2, two viruses related to bovine herpesvirus 1. Arch Virol 128, 379–388.[CrossRef]
    [Google Scholar]
  44. Warming, S., Costantino, N., Court, D. L., Jenkins, N. A. & Copeland, N. G. ( 2005; ). Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33, e36.[CrossRef]
    [Google Scholar]
  45. Weck, K. E., Kim, S. S., Virgin, H. I. & Speck, S. H. ( 1999; ). Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J Virol 73, 3273–3283.
    [Google Scholar]
  46. Ye, F. C., Zhou, F. C., Yoo, S. M., Xie, J. P., Browning, P. J. & Gao, S. J. ( 2004; ). Disruption of Kaposi's sarcoma-associated herpesvirus latent nuclear antigen leads to abortive episome persistence. J Virol 78, 11121–11129.[CrossRef]
    [Google Scholar]
  47. Zimmermann, W., Broll, H., Ehlers, B., Buhk, H. J., Rosenthal, A. & Goltz, M. ( 2001; ). Genome sequence of bovine herpesvirus 4, a bovine Rhadinovirus, and identification of an origin of DNA replication. J Virol 75, 1186–1194.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.023192-0
Loading
/content/journal/jgv/10.1099/vir.0.023192-0
Loading

Data & Media loading...

Supplements

[ Single PDF file of figures] (145 KB)

PDF

Oligonucleotides used for PCR amplification [ PDF] (68 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error