Vaccination with murid herpesvirus-4 glycoprotein B reduces viral lytic replication but does not induce detectable virion neutralization Open Access

Abstract

Herpesviruses characteristically disseminate from immune hosts. Therefore in the context of natural infection, antibody neutralizes them poorly. Murid herpesvirus-4 (MuHV-4) provides a tractable model with which to understand gammaherpesvirus neutralization. MuHV-4 virions blocked for cell binding by immune sera remain infectious for IgG-Fc receptor myeloid cells, so broadly neutralizing antibodies must target the virion fusion complex – glycoprotein B (gB) or gH/gL. While gB-specific neutralizing antibodies are rare, its domains I+II (gB-N) contain at least one potent neutralization epitope. Here, we tested whether immunization with recombinant gB presenting this epitope could induce neutralizing antibodies in naive mice and protect them against MuHV-4 challenge. Immunizing with the full-length gB extracellular domain induced a strong gB-specific antibody response and reduced MuHV-4 lytic replication but did not induce detectable neutralization. gB-N alone, which more selectively displayed pre-fusion epitopes including neutralization epitopes, also failed to induce neutralizing responses, and while viral lytic replication was again reduced this depended completely on IgG Fc receptors. gB and gB-N also boosted neutralizing responses in only a minority of carrier mice. Therefore, it appears that neutralizing epitopes on gB are intrinsically difficult for the immune response to target.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.023085-0
2010-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/10/2542.html?itemId=/content/journal/jgv/10.1099/vir.0.023085-0&mimeType=html&fmt=ahah

References

  1. Adler, H., Messerle, M., Wagner, M. & Koszinowski, U. H.(2000). Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74, 6964–6974.[CrossRef] [Google Scholar]
  2. Akula, S. M., Pramod, N. P., Wang, F. Z. & Chandran, B.(2001). Human herpesvirus 8 envelope-associated glycoprotein B interacts with heparan sulfate-like moieties. Virology 284, 235–249.[CrossRef] [Google Scholar]
  3. Bennett, N. J., May, J. S. & Stevenson, P. G.(2005). Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol 3, e120.[CrossRef] [Google Scholar]
  4. Burton, D. R., Stanfield, R. L. & Wilson, I. A.(2005). Antibody vs. HIV in a clash of evolutionary titans. Proc Natl Acad Sci U S A 102, 14943–14948.[CrossRef] [Google Scholar]
  5. Cranage, M. P., Kouzarides, T., Bankier, A. T., Satchwell, S., Weston, K., Tomlinson, P., Barrell, B., Hart, H., Bell, S. E. & other authors(1986). Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO J 5, 3057–3063. [Google Scholar]
  6. Davison, A. J. & Moss, B.(1990). New vaccinia virus recombination plasmids incorporating a synthetic late promoter for high level expression of foreign proteins. Nucleic Acids Res 18, 4285–4286.[CrossRef] [Google Scholar]
  7. de Lima, B. D., May, J. S. & Stevenson, P. G.(2004). Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 78, 5103–5112.[CrossRef] [Google Scholar]
  8. Dialyna, I. A., Graham, D., Rezaee, R., Blue, C. E., Stavrianeas, N. G., Neisters, H. G., Spandidos, D. A. & Blackbourn, D. J.(2004). Anti-HHV-8/KSHV antibodies in infected individuals inhibit infection in vitro. AIDS 18, 1263–1270.[CrossRef] [Google Scholar]
  9. Gangappa, S., Kapadia, S. B., Speck, S. H. & Virgin, H. W.(2002). Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 76, 11460–11468.[CrossRef] [Google Scholar]
  10. Gill, M. B., Gillet, L., Colaco, S., May, J. S., de Lima, B. D. & Stevenson, P. G.(2006). Murine gammaherpesvirus-68 glycoprotein H-glycoprotein L complex is a major target for neutralizing monoclonal antibodies. J Gen Virol 87, 1465–1475.[CrossRef] [Google Scholar]
  11. Gillet, L. & Stevenson, P. G.(2007a). Evidence for a multiprotein gamma-2 herpesvirus entry complex. J Virol 81, 13082–13091.[CrossRef] [Google Scholar]
  12. Gillet, L. & Stevenson, P. G.(2007b). Antibody evasion by the N terminus of murid herpesvirus-4 glycoprotein B. EMBO J 26, 5131–5142.[CrossRef] [Google Scholar]
  13. Gillet, L., Gill, M. B., Colaco, S., Smith, C. M. & Stevenson, P. G.(2006). Murine gammaherpesvirus-68 glycoprotein B presents a difficult neutralization target to monoclonal antibodies derived from infected mice. J Gen Virol 87, 3515–3527.[CrossRef] [Google Scholar]
  14. Gillet, L., Adler, H. & Stevenson, P. G.(2007a). Glycosaminoglycan interactions in murine gammaherpesvirus-68 infection. PLoS ONE 2, e347.[CrossRef] [Google Scholar]
  15. Gillet, L., May, J. S. & Stevenson, P. G.(2007b). Post-exposure vaccination improves gammaherpesvirus neutralization. PLoS ONE 2, e899.[CrossRef] [Google Scholar]
  16. Gillet, L., May, J. S., Colaco, S. & Stevenson, P. G.(2007c). The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization. PLoS ONE 2, e705.[CrossRef] [Google Scholar]
  17. Gillet, L., Colaco, S. & Stevenson, P. G.(2008a). The murid herpesvirus-4 gH/gL binds to glycosaminoglycans. PLoS ONE 3, e1669.[CrossRef] [Google Scholar]
  18. Gillet, L., Colaco, S. & Stevenson, P. G.(2008b). The murid herpesvirus-4 gL regulates an entry-associated conformation change in gH. PLoS ONE 3, e2811.[CrossRef] [Google Scholar]
  19. Gillet, L., Colaco, S. & Stevenson, P. G.(2008c). Glycoprotein B switches conformation during murid herpesvirus 4 entry. J Gen Virol 89, 1352–1363.[CrossRef] [Google Scholar]
  20. Gillet, L., Alenquer, M., Glauser, D. L., Colaco, S., May, J. S. & Stevenson, P. G.(2009a). Glycoprotein L sets the neutralization profile of murid herpesvirus-4. J Gen Virol 90, 1202–1214.[CrossRef] [Google Scholar]
  21. Gillet, L., May, J. S. & Stevenson, P. G.(2009b).In vivo importance of heparan sulfate-binding glycoproteins for murid herpesvirus-4 infection. J Gen Virol 90, 602–613.[CrossRef] [Google Scholar]
  22. Gorman, S., Harvey, N. L., Moro, D., Lloyd, M. L., Voigt, V., Smith, L. M., Lawson, M. A. & Shellam, G. R.(2006). Mixed infection with multiple strains of murine cytomegalovirus occurs following simultaneous or sequential infection of immunocompetent mice. J Gen Virol 87, 1123–1132.[CrossRef] [Google Scholar]
  23. Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J. & Harrison, S. C.(2006). Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313, 217–220.[CrossRef] [Google Scholar]
  24. Highlander, S. L., Cai, W. H., Person, S., Levine, M. & Glorioso, J. C.(1988). Monoclonal antibodies define a domain on herpes simplex virus glycoprotein B involved in virus penetration. J Virol 62, 1881–1888. [Google Scholar]
  25. Janz, A., Oezel, M., Kurzeder, C., Mautner, J., Pich, D., Kost, M., Hammerschmidt, W. & Delecluse, H. J.(2000). Infectious Epstein–Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 74, 10142–10152.[CrossRef] [Google Scholar]
  26. Kim, I. J., Flaño, E., Woodland, D. L. & Blackman, M. A.(2002). Antibody-mediated control of persistent gamma-herpesvirus infection. J Immunol 168, 3958–3964.[CrossRef] [Google Scholar]
  27. Li, Q., Turk, S. M. & Hutt-Fletcher, L. M.(1995). The Epstein–Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. J Virol 69, 3987–3994. [Google Scholar]
  28. Lopes, F. B., Colaco, S., May, J. S. & Stevenson, P. G.(2004). Characterization of the murine gamma-herpesvirus 68 glycoprotein B. J Virol 78, 13370–13375.[CrossRef] [Google Scholar]
  29. May, J. S., Coleman, H. M., Boname, J. M. & Stevenson, P. G.(2005). Murine gammaherpesvirus-68 ORF28 encodes a non-essential virion glycoprotein. J Gen Virol 86, 919–928.[CrossRef] [Google Scholar]
  30. Milho, R., Smith, C. M., Marques, S., Alenquer, M., May, J. S., Gillet, L., Gaspar, M., Efstathiou, S., Simas, J. P. & Stevenson, P. G.(2009).In vivo imaging of murid herpesvirus-4 infection. J Gen Virol 90, 21–32.[CrossRef] [Google Scholar]
  31. Naranatt, P. P., Akula, S. M. & Chandran, B.(2002). Characterization of γ2-human herpesvirus-8 glycoproteins gH and gL. Arch Virol 147, 1349–1370.[CrossRef] [Google Scholar]
  32. Nazerian, K., Lee, L. F., Yanagida, N. & Ogawa, R.(1992). Protection against Marek's disease by a fowlpox virus recombinant expressing the glycoprotein B of Marek's disease virus. J Virol 66, 1409–1413. [Google Scholar]
  33. Ohlin, M., Sundqvist, V. A., Mach, M., Wahren, B. & Borrebaeck, C. A.(1993). Fine specificity of the human immune response to the major neutralization epitopes expressed on cytomegalovirus gp58/116 (gB), as determined with human monoclonal antibodies. J Virol 67, 703–710. [Google Scholar]
  34. Okazaki, K., Fujii, S., Takada, A. & Kida, H.(2006). The amino-terminal residue of glycoprotein B is critical for neutralization of bovine herpesvirus 1. Virus Res 115, 105–111.[CrossRef] [Google Scholar]
  35. Pass, R. F., Zhang, C., Evans, A., Simpson, T., Andrews, W., Huang, M. L., Corey, L., Hill, J., Davis, E. & other authors(2009). Vaccine prevention of maternal cytomegalovirus infection. N Engl J Med 360, 1191–1199.[CrossRef] [Google Scholar]
  36. Roche, S., Rey, F. A., Gaudin, Y. & Bressanelli, S.(2007). Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science 315, 843–848.[CrossRef] [Google Scholar]
  37. Rosa, G. T., Gillet, L., Smith, C. M., de Lima, B. D. & Stevenson, P. G.(2007). IgG Fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. PLoS ONE 2, e560.[CrossRef] [Google Scholar]
  38. Sakamoto, K., Asanuma, H., Nakamura, T., Kanno, T., Sata, T. & Katano, H.(2010). Immune response to intranasal and intraperitoneal immunization with Kaposi's sarcoma-associated herpesvirus in mice. Vaccine 28, 3325–3332.[CrossRef] [Google Scholar]
  39. Smith, C. M., Rosa, G. T., May, J. S., Bennett, N. J., Mount, A. M., Belz, G. T. & Stevenson, P. G.(2006). CD4+ T cells specific for a model latency-associated antigen fail to control a gammaherpesvirus in vivo. Eur J Immunol 36, 3186–3197.[CrossRef] [Google Scholar]
  40. Sokal, E. M., Hoppenbrouwers, K., Vandermeulen, C., Moutschen, M., Léonard, P., Moreels, A., Haumont, M., Bollen, A., Smets, F. & Denis, M.(2007). Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J Infect Dis 196, 1749–1753.[CrossRef] [Google Scholar]
  41. Speckner, A., Glykofrydes, D., Ohlin, M. & Mach, M.(1999). Antigenic domain 1 of human cytomegalovirus glycoprotein B induces a multitude of different antibodies which, when combined, results in incomplete virus neutralization. J Gen Virol 80, 2183–2191. [Google Scholar]
  42. Stevenson, P. G., Cardin, R. D., Christensen, J. P. & Doherty, P. C.(1999a). Immunological control of a murine gammaherpesvirus independent of CD8+ T cells. J Gen Virol 80, 477–483. [Google Scholar]
  43. Stevenson, P. G., Belz, G. T., Castrucci, M. R., Altman, J. D. & Doherty, P. C.(1999b). A gamma-herpesvirus sneaks through a CD8+ T cell response primed to a lytic-phase epitope. Proc Natl Acad Sci U S A 96, 9281–9286.[CrossRef] [Google Scholar]
  44. Stevenson, P. G., May, J. S., Smith, X. G., Marques, S., Adler, H., Koszinowski, U. H., Simas, J. P. & Efstathiou, S.(2002). K3-mediated evasion of CD8+ T cells aids amplification of a latent gamma-herpesvirus. Nat Immunol 3, 733–740. [Google Scholar]
  45. Stevenson, P. G., Simas, J. P. & Efstathiou, S.(2009). Immune control of mammalian gamma-herpesviruses: lessons from murid herpesvirus-4. J Gen Virol 90, 2317–2330.[CrossRef] [Google Scholar]
  46. Thorley-Lawson, D. A. & Poodry, C. A.(1982). Identification and isolation of the main component (gp350-gp220) of Epstein–Barr virus responsible for generating neutralizing antibodies in vivo. J Virol 43, 730–736. [Google Scholar]
  47. Turk, S. M., Jiang, R., Chesnokova, L. S. & Hutt-Fletcher, L. M.(2006). Antibodies to gp350/220 enhance the ability of Epstein–Barr virus to infect epithelial cells. J Virol 80, 9628–9633.[CrossRef] [Google Scholar]
  48. Utz, U., Britt, W., Vugler, L. & Mach, M.(1989). Identification of a neutralizing epitope on glycoprotein gp58 of human cytomegalovirus. J Virol 63, 1995–2001. [Google Scholar]
  49. Willey, D. E., Cantin, E. M., Hill, L. R., Moss, B., Notkins, A. L. & Openshaw, H.(1988). Herpes simplex virus type 1-vaccinia virus recombinant expressing glycoprotein B: protection from acute and latent infection. J Infect Dis 158, 1382–1386.[CrossRef] [Google Scholar]
  50. Wright, D. E., Colaco, S., Colaco, C. & Stevenson, P. G.(2009). Antibody limits in vivo murid herpesvirus-4 replication by IgG Fc receptor-dependent functions. J Gen Virol 90, 2592–2603.[CrossRef] [Google Scholar]
  51. Yewdell, J. W. & Hill, A. B.(2002). Viral interference with antigen presentation. Nat Immunol 3, 1019–1025.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.023085-0
Loading
/content/journal/jgv/10.1099/vir.0.023085-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2542 - 2552

Boosting gB-specific antibody responses by post-exposure vaccination of BALB/c MuHV-4 carrier mice

Boosting gB-specific neutralizing antibody responses in BALB/c carrier mice [Single PDF file](599 KB)



PDF

Most cited Most Cited RSS feed