1887

Abstract

A better understanding of human immunodeficiency virus type 1 drug-resistance evolution under the selective pressure of combination treatment is important for the design of long-term effective treatment strategies. We applied Bayesian network learning to sequences from patients treated with the reverse transcriptase inhibitor combination of zidovudine (AZT) and lamivudine (3TC) to identify the role of many treatment-selected mutations in the development of resistance. Based on the Bayesian network structure, an fitness landscape was built, reflecting the necessary selective pressure under treatment, to evolve naive sequences to sequences obtained from patients treated with the combination. This landscape, combined with an evolutionary model, was used to predict resistance evolution in longitudinal sequence pairs. In our analysis, mutations 41L, 70R, 184V and 215F/Y were identified as major resistance mutations to the combination of AZT and 3TC, as they were associated directly with treatment experience. The network also suggested a possible role in resistance development for a number of novel mutations. Estimated fitness, using the landscape, correlated significantly with resistance phenotype in genotype–phenotype pairs ( =0.70). Variation in predicted evolution under selective pressure correlated significantly with observed evolution during AZT plus 3CT treatment. In conclusion, we confirmed current knowledge on resistance development to the combination of AZT and 3CT, but additional novel mutations were identified. Moreover, a model to predict resistance evolution during AZT and 3CT treatment has been built and validated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.022657-0
2010-08-01
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/8/1898.html?itemId=/content/journal/jgv/10.1099/vir.0.022657-0&mimeType=html&fmt=ahah

References

  1. Beerenwinkel N., Sing T., Lengauer T., Rahnenführer J., Roomp K., Savenkov I., Fischer R., Hoffmann D., Selbig, J. & other authors. 2005a; Computational methods for the design of effective therapies against drug resistant HIV strains. Bioinformatics21:3943–3950
    [Google Scholar]
  2. Beerenwinkel N., Däumer M., Sing T., Rahnenführer J., Lengauer T., Selbig J., Hoffmann D., Kaiser R.. 2005b; Estimating HIV evolutionary pathways and the genetic barrier to drug resistance. J Infect Dis191:1953–1960
    [Google Scholar]
  3. Beerenwinkel N., Rahnenführer J., Däumer M., Hoffmann D., Kaiser R., Selbig J., Lengauer T.. 2005c; Learning multiple evolutionary pathways from cross-sectional data. J Comput Biol12:584–598
    [Google Scholar]
  4. Bennett D. E., Camacho R. J., Otelea D., Kuritzkes D. R., Fleury F., Kiuchi M., Heneine W., Kantor R., Jordan M. R.. other authors 2009; Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. PLoS One4:e4724
    [Google Scholar]
  5. Boucher C. A., O'Sullivan E., Mulder J. W., Ramautarsing C., Kellam P., Darby G., Lange J. M., Goudsmit J., Larder B. A.. 1992; Ordered appearance of zidovudine resistance mutations during treatment of 18 human immunodeficiency virus-positive subjects. J Infect Dis165:105–110
    [Google Scholar]
  6. Boucher C. A., Cammack N., Schipper P., Schuurman R., Rouse P., Wainberg M. A., Cameron J. M.. 1993; High-level resistance to (−) enantiomeric 2′-deoxy-3′-thiacytidine in vitro is due to one amino acid substitution in the catalytic site of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother37:2231–2234
    [Google Scholar]
  7. Ceccherini-Silberstein F., Svicher V., Sing T., Artese A., Santoro M. M., Forbici F., Bertoli A., Alcaro S., Palamara G.. other authors 2007; Characterization and structural analysis of novel mutations in human immunodeficiency virus type 1 reverse transcriptase involved in the regulation of resistance to nonnucleoside inhibitors. J Virol81:11507–11519
    [Google Scholar]
  8. Cozzi-Lepri A., Ruiz L., Loveday C., Phillips A. N., Clotet B., Reiss P., Ledergerber B., Holkmann C., Staszewski S.. other authors 2005; Thymidine analogue mutation profiles: factors associated with acquiring specific profiles and their impact on the virological response to therapy. Antivir Ther10:791–802
    [Google Scholar]
  9. Deforche K., Silander T., Camacho R. J., Grossman Z., Soares M. A., Van Laethem K., Kantor R., Moreau Y., Vandamme A.-M.. other authors 2006; Analysis of HIV-1 pol sequences using Bayesian networks: implications for drug resistance. Bioinformatics22:2975–2979
    [Google Scholar]
  10. Deforche K., Camacho R. J., Grossman Z., Silander T., Soares M. A., Moreau Y., Shafer R. W., Van Laethem K., Carvalho A. P.. other authors 2007a; Bayesian network analysis of resistance pathways against HIV-1 protease inhibitors. Infect Genet Evol7:382–390
    [Google Scholar]
  11. Deforche K., Camacho R. J., Van Laethem K., Shapiro B., Moreau Y., Rambaut A., Vandamme A.-M., Lemey P.. 2007b; Estimating the relative contribution of dNTP pool imbalance and APOBEC3G/3F editing to HIV evolution in vivo . J Comput Biol14:1105–1114
    [Google Scholar]
  12. Deforche K., Camacho R. J., Grossman Z., Soares M. A., Van Laethem K., Katzenstein D. A., Harrigan P. R., Kantor R., Shafer R. W.. other authors 2008a; Bayesian network analyses of resistance pathways against efavirenz and nevirapine. AIDS22:2107–2115
    [Google Scholar]
  13. Deforche K., Camacho R. J., Van Laethem K., Lemey P., Rambaut A., Moreau Y., Vandamme A. M.. 2008b; Estimation of an in vivo fitness landscape experienced by HIV-1 under drug selective pressure useful for prediction of drug resistance evolution during treatment. Bioinformatics24:34–41
    [Google Scholar]
  14. Deforche K., Cozzi-Lepri A., Theys K., Clotet B., Camacho R. J., Kjaer J., Van Laethem K., Phillips A. N., Moreau Y.. & other authors (2008c). Modelled in vivo HIV fitness under drug selective pressure and estimated genetic barrier towards resistance are predictive for virological response. Antivir Ther13:399–407
    [Google Scholar]
  15. de Oliveira T., Deforche K., Cassol S., Salminen M., Paraskevis D., Seebregts C., Snoeck J., van Rensburg E. J., Wensing A. M. J.. other authors 2005; An automated genotyping system for analysis of HIV-1 and other microbial sequences. Bioinformatics21:3797–3800
    [Google Scholar]
  16. Gonzales M. J., Wu T. D., Taylor J., Belitskaya I., Kantor R., Israelski D., Chou S., Zolopa A. R., Fessel W. J., Shafer R. W.. 2003; Extended spectrum of HIV-1 reverse transcriptase mutations in patients receiving multiple nucleoside analog inhibitors. AIDS17:791–799
    [Google Scholar]
  17. Gotte M.. 2007; Should we include connection domain mutations of HIV-1 reverse transcriptase in HIV resistance testing. PLoS Med4:e346
    [Google Scholar]
  18. Holford N. H., Sheiner L. B.. 1982; Kinetics of pharmacologic response. Pharmacol Ther16:143–166
    [Google Scholar]
  19. Johnson V. A., Brun-Vezinet F., Clotet B., Gunthard H. F., Kuritzkes D. R., Pillay D., Schapiro J. M., Richman D. D.. 2008; Update of the drug resistance mutations in HIV-1. Top HIV Med16:138–145
    [Google Scholar]
  20. Kantor R., Machekano R., Gonzales M. J., Dupnik K., Schapiro J. M., Shafer R. W.. 2001; Human immunodeficiency virus reverse transcriptase and protease sequence database: an expanded data model integrating natural language and sequence analysis programs. Nucleic Acids Res29:296–299
    [Google Scholar]
  21. Miller V., Phillips A., Rottmann C., Staszewski S., Pauwels R., Hertogs K., de Bthune M. P., Kemp S. D.. other authors 1998; Dual resistance to zidovudine and lamivudine in patients treated with zidovudine-lamivudine combination therapy: association with therapy failure. J Infect Dis177:1521–1532
    [Google Scholar]
  22. Myllymäki P., Silander T., Tirri H., Uronen P.. 2002; B-Course: a web-based tutorial for Bayesian and causal data analysis. Int J Artif Intell Tools11:396–387
    [Google Scholar]
  23. Pearl J.. 1988; Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference San Mateo, CA: Morgan Kaufmann;
  24. Rhee S. Y., Fessel J. W., Zolopa A. R., Hurley L., Liu T., Taylor J., Nguyen D. P., Slome S., Klein D.. other authors 2005; HIV-1 protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J Infect Dis192:456–465
    [Google Scholar]
  25. Rhee S. Y., Liu T. F., Holmes S. P., Shafer R. W.. 2007; HIV-1 subtype B protease and reverse transcriptase amino acid covariation. PLoS Comput Biol3:e87
    [Google Scholar]
  26. Saracino A., Monno L., Scudeller L., Cibelli D. C., Tartaglia A., Punzi G., Torti C., Lo Caputo S., Mazzotta F.. other authors 2006; Impact of unreported HIV-1 reverse transcriptase mutations on phenotypic resistance to nucleoside and non-nucleoside inhibitors. J Med Virol78:9–17
    [Google Scholar]
  27. Shafer R. W., Iversen A. K., Winters M. A., Aguiniga E., Katzenstein D. A., Merigan T. C.. 1995; Drug resistance and heterogeneous long-term virologic responses of human immunodeficiency virus type 1-infected subjects to zidovudine and didanosine combination therapy. The AIDS Clinical Trials Group 143 Virology Team. J Infect Dis172:70–78
    [Google Scholar]
  28. Shahriar R., Rhee S. Y., Liu T. F., Fessel W. J., Scarsella A., Towner W., Holmes S. P., Zolopa A. R., Shafer R. W.. 2009; Nonpolymorphic human immunodeficiency virus type 1 protease and reverse transcriptase treatment-selected mutations. Antimicrob Agents Chemother53:4869–4878
    [Google Scholar]
  29. Sturmer M., Staszewski S., Doerr H. W., Larder B., Bloor S., Hertogs K.. 2003; Correlation of phenotypic zidovudine resistance with mutational patterns in the reverse transcriptase of human immunodeficiency virus type 1: interpretation of established mutations and characterization of new polymorphisms at codons 208, 211, and 214. Antimicrob Agents Chemother47:54–61
    [Google Scholar]
  30. Svicher V., Sing T., Santoro M. M., Forbici F., Rodríguez-Barrios F., Bertoli A., Beerenwinkel N., Bellocchi M. C., Gago F.. other authors 2006; Involvement of novel human immunodeficiency virus type 1 reverse transcriptase mutations in the regulation of resistance to nucleoside inhibitors. J Virol80:7186–7198
    [Google Scholar]
  31. Swofford D. L.. 2000; paup*: phylogenetic analysis using parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  32. Van Laethem K., Vandamme A.-M.. 2006; Interpreting resistance data for HIV-1 therapy management – know the limitations. AIDS Rev8:37–43
    [Google Scholar]
  33. Van Vaerenbergh K., Van Laethem K., Albert J., Boucher C. A., Clotet B., Floridia M., Gerstoft J., Hejdeman B., Nielsen C.. other authors 2000; Prevalence and characteristics of multinucleoside-resistant human immunodeficiency virus type 1 among European patients receiving combinations of nucleoside analogues. Antimicrob Agents Chemother44:2109–2117
    [Google Scholar]
  34. Vingerhoets J., Azijn H., Fransen E., De Baere I., Smeulders L., Jochmans D., Andries K., Pauwels R., de Bethune M. P.. 2005; TMC125 displays a high genetic barrier to the development of resistance: evidence from in vitro selection experiments. J Virol79:12773–12782
    [Google Scholar]
  35. Wainberg M. A., Brenner B. G., Turner D.. 2005; Changing patterns in the selection of viral mutations among patients receiving nucleoside and nucleotide drug combinations directed against human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother49:1671–1678
    [Google Scholar]
  36. Zaccarelli M., Perno C. F., Forbici F., Soldani F., Bonfigli S., Gori C., Trotta M. P., Bellocchi M. C., Liuzzi G.. other authors 2004; Q151M-mediated multinucleoside resistance: prevalence, risk factors, and response to salvage therapy. Clin Infect Dis38:433–437
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.022657-0
Loading
/content/journal/jgv/10.1099/vir.0.022657-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error