Multiple proteins interacting with DNA polymerases orchestrate DNA replication. Human cytomegalovirus (HCMV) encodes a DNA polymerase that includes the presumptive processivity factor UL44. UL44 is structurally homologous to the eukaryotic DNA polymerase processivity factor proliferating cell nuclear antigen (PCNA), which interacts with numerous proteins. Previous proteomic analysis has identified the HCMV protein IRS1 as a candidate protein interacting with UL44. Nuclease-resistant reciprocal co-immunoprecipitation of UL44 with IRS1 and with TRS1, which has an amino terminus identical to that of IRS1, was observed from lysate of cells infected with viruses expressing epitope-tagged UL44, epitope-tagged IRS1 or epitope-tagged TRS1. Western blotting of protein immunoprecipitated from infected cell lysate indicated that epitope-tagged IRS1 and TRS1 do not associate simultaneously with UL44. Glutathione -transferase pull-down experiments indicated that IRS1 and TRS1 interact with UL44 via a region that is identical in both proteins. Taken together, these data suggest that IRS1 and TRS1 may compete for association with UL44 and may affect UL44 function differentially.


Article metrics loading...

Loading full text...

Full text loading...



  1. Appleton, B. A., Loregian, A., Filman, D. J., Coen, D. M. & Hogle, J. M.(2004). The cytomegalovirus DNA polymerase subunit UL44 forms a C clamp-shaped dimer. Mol Cell 15, 233–244.[CrossRef] [Google Scholar]
  2. Appleton, B. A., Brooks, J., Loregian, A., Filman, D. J., Coen, D. M. & Hogle, J. M.(2006). Crystal structure of the cytomegalovirus DNA polymerase subunit UL44 in complex with the C terminus from the catalytic subunit. Differences in structure and function relative to unliganded UL44. J Biol Chem 281, 5224–5232.[CrossRef] [Google Scholar]
  3. Baldick, C. J., Jr, Marchini, A., Patterson, C. E. & Shenk, T.(1997). Human cytomegalovirus tegument protein pp71 (ppUL82) enhances the infectivity of viral DNA and accelerates the infectious cycle. J Virol 71, 4400–4408. [Google Scholar]
  4. Blankenship, C. A. & Shenk, T.(2002). Mutant human cytomegalovirus lacking the immediate-early TRS1 coding region exhibits a late defect. J Virol 76, 12290–12299.[CrossRef] [Google Scholar]
  5. Child, S. J., Hakki, M., De Niro, K. L. & Geballe, A. P.(2004). Evasion of cellular antiviral responses by human cytomegalovirus TRS1 and IRS1. J Virol 78, 197–205.[CrossRef] [Google Scholar]
  6. Ertl, P. F. & Powell, K. L.(1992). Physical and functional interaction of human cytomegalovirus DNA polymerase and its accessory protein (ICP36) expressed in insect cells. J Virol 66, 4126–4133. [Google Scholar]
  7. Gao, Y., Colletti, K. & Pari, G. S.(2008). Identification of human cytomegalovirus UL84 virus- and cell-encoded binding partners by using proteomics analysis. J Virol 82, 96–104.[CrossRef] [Google Scholar]
  8. Hakki, M. & Geballe, A. P.(2005). Double-stranded RNA binding by human cytomegalovirus pTRS1. J Virol 79, 7311–7318.[CrossRef] [Google Scholar]
  9. Hakki, M., Marshall, E. E., De Niro, K. L. & Geballe, A. P.(2006). Binding and nuclear relocalization of protein kinase R by human cytomegalovirus TRS1. J Virol 80, 11817–11826.[CrossRef] [Google Scholar]
  10. Hobom, U., Brune, W., Messerle, M., Hahn, G. & Koszinowski, U. H.(2000). Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol 74, 7720–7729.[CrossRef] [Google Scholar]
  11. Isomura, H., Stinski, M. F., Kudoh, A., Nakayama, S., Iwahori, S., Sato, Y. & Tsurumi, T.(2007). The late promoter of the human cytomegalovirus viral DNA polymerase processivity factor has an impact on delayed early and late viral gene products but not on viral DNA synthesis. J Virol 81, 6197–6206.[CrossRef] [Google Scholar]
  12. Isomura, H., Stinski, M. F., Kudoh, A., Murata, T., Nakayama, S., Sato, Y., Iwahori, S. & Tsurumi, T.(2008). Noncanonical TATA sequence in the UL44 late promoter of human cytomegalovirus is required for the accumulation of late viral transcripts. J Virol 82, 1638–1646.[CrossRef] [Google Scholar]
  13. Kamil, J. P. & Coen, D. M.(2007). Human cytomegalovirus protein kinase UL97 forms a complex with the tegument phosphoprotein pp65. J Virol 81, 10659–10668.[CrossRef] [Google Scholar]
  14. Kerry, J. A., Priddy, M. A., Jervey, T. Y., Kohler, C. P., Staley, T. L., Vanson, C. D., Jones, T. R., Iskenderian, A. C., Anders, D. G. & Stenberg, R. M.(1996). Multiple regulatory events influence human cytomegalovirus DNA polymerase (UL54) expression during viral infection. J Virol 70, 373–382. [Google Scholar]
  15. Lai, J. S. & Herr, W.(1992). Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc Natl Acad Sci U S A 89, 6958–6962.[CrossRef] [Google Scholar]
  16. Loregian, A., Appleton, B. A., Hogle, J. M. & Coen, D. M.(2004a). Residues of human cytomegalovirus DNA polymerase catalytic subunit UL54 that are necessary and sufficient for interaction with the accessory protein UL44. J Virol 78, 158–167.[CrossRef] [Google Scholar]
  17. Loregian, A., Appleton, B. A., Hogle, J. M. & Coen, D. M.(2004b). Specific residues in the connector loop of the human cytomegalovirus DNA polymerase accessory protein UL44 are crucial for interaction with the UL54 catalytic subunit. J Virol 78, 9084–9092.[CrossRef] [Google Scholar]
  18. Maga, G. & Hubscher, U.(2003). Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116, 3051–3060.[CrossRef] [Google Scholar]
  19. Marshall, E. E., Bierle, C. J., Brune, W. & Geballe, A. P.(2009). Essential role for either TRS1 or IRS1 in human cytomegalovirus replication. J Virol 83, 4112–4120.[CrossRef] [Google Scholar]
  20. Moldovan, G. L., Pfander, B. & Jentsch, S.(2007). PCNA, the maestro of the replication fork. Cell 129, 665–679.[CrossRef] [Google Scholar]
  21. Pari, G. S. & Anders, D. G.(1993). Eleven loci encoding trans-acting factors are required for transient complementation of human cytomegalovirus oriLyt-dependent DNA replication. J Virol 67, 6979–6988. [Google Scholar]
  22. Pari, G. S., Kacica, M. A. & Anders, D. G.(1993). Open reading frames UL44, IRS1/TRS1, and UL36–38 are required for transient complementation of human cytomegalovirus oriLyt-dependent DNA synthesis. J Virol 67, 2575–2582. [Google Scholar]
  23. Prichard, M. N., Lawlor, H., Duke, G. M., Mo, C., Wang, Z., Dixon, M., Kemble, G. & Kern, E. R.(2005). Human cytomegalovirus uracil DNA glycosylase associates with ppUL44 and accelerates the accumulation of viral DNA. Virol J 2, 55[CrossRef] [Google Scholar]
  24. Ranneberg-Nilsen, T., Dale, H. A., Luna, L., Slettebakk, R., Sundheim, O., Rollag, H. & Bjoras, M.(2008). Characterization of human cytomegalovirus uracil DNA glycosylase (UL114) and its interaction with polymerase processivity factor (UL44). J Mol Biol 381, 276–288.[CrossRef] [Google Scholar]
  25. Romanowski, M. J. & Shenk, T.(1997). Characterization of the human cytomegalovirus irs1 and trs1 genes: a second immediate-early transcription unit within irs1 whose product antagonizes transcriptional activation. J Virol 71, 1485–1496. [Google Scholar]
  26. Sarisky, R. T. & Hayward, G. S.(1996). Evidence that the UL84 gene product of human cytomegalovirus is essential for promoting oriLyt-dependent DNA replication and formation of replication compartments in cotransfection assays. J Virol 70, 7398–7413. [Google Scholar]
  27. Stasiak, P. C. & Mocarski, E. S.(1992). Transactivation of the cytomegalovirus ICP36 gene promoter requires the alpha gene product TRS1 in addition to IE1 and IE2. J Virol 66, 1050–1058. [Google Scholar]
  28. Strang, B. L. & Stow, N. D.(2005). Circularization of the herpes simplex virus type 1 genome upon lytic infection. J Virol 79, 12487–12494.[CrossRef] [Google Scholar]
  29. Strang, B. L., Sinigalia, E., Silva, L. A., Coen, D. M. & Loregian, A.(2009). Analysis of the association of the human cytomegalovirus DNA polymerase subunit UL44 with the viral DNA replication factor UL84. J Virol 83, 7581–7589.[CrossRef] [Google Scholar]
  30. Strang, B. L., Boulant, S. & Coen, D. M.(2010). Nucleolin can associate with the human cytomegalovirus DNA polymerase accessory subunit UL44 and is necessary for viral replication. J Virol 84, 1771–1784.[CrossRef] [Google Scholar]
  31. Taylor, T. J. & Knipe, D. M.(2004). Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J Virol 78, 5856–5866.[CrossRef] [Google Scholar]
  32. Tischer, B. K., von Einem, J., Kaufer, B. & Osterrieder, N.(2006). Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40, 191–197.[CrossRef] [Google Scholar]
  33. Zhang, Q., Hong, Y., Dorsky, D., Holley-Guthrie, E., Zalani, S., Elshiekh, N. A., Kiehl, A., Le, T. & Kenney, S.(1996). Functional and physical interactions between the Epstein–Barr virus (EBV) proteins BZLF1 and BMRF1: effects on EBV transcription and lytic replication. J Virol 70, 5131–5142. [Google Scholar]
  34. Zhang, Q., Holley-Guthrie, E., Ge, J. Q., Dorsky, D. & Kenney, S.(1997). The Epstein–Barr virus (EBV) DNA polymerase accessory protein, BMRF1, activates the essential downstream component of the EBV oriLyt. Virology 230, 22–34.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error