Complete genome constellation of a caprine group A rotavirus strain reveals common evolution with ruminant and human rotavirus strains Free

Abstract

This study reports the first complete genome sequence of a caprine group A rotavirus (GAR) strain, GO34. The VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes of strain GO34, detected in Bangladesh, were assigned to the G6-P[1]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genotypes, respectively. Strain GO34 was closely related to the VP4, VP6–7 and NSP4–5 genes of bovine GARs and the NSP1 gene of GO34 to an ovine GAR. Strain GO34 shared low nucleotide sequence identities (<90 %) with VP2–3 genes of other GARs, and was equally related to NSP3 genes of human, ruminant and camelid strains. The VP1, VP6 and NSP2 genes of strain GO34 also exhibited a close genetic relatedness to human G2, G6, G8 and G12 DS-1-like GARs, whereas the NSP1 of GO34 was also closely related to human G6P[14] strains. All these findings point to a common evolutionary origin of GO34 and bovine, ovine, antelope, guanaco and human G6P[14] GARs, although phylogenetically GO34 is not particularly closely related to any other rotavirus strains known to date.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.022244-0
2010-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/9/2367.html?itemId=/content/journal/jgv/10.1099/vir.0.022244-0&mimeType=html&fmt=ahah

References

  1. Das, S., Varghese, V., Chaudhuri, S., Barman, P., Kojima, K., Dutta, P., Bhattacharya, S. K., Krishnan, T., Kobayashi, N. & Naik, T. N.(2004). Genetic variability of human rotavirus strains isolated from Eastern and Northern India. J Med Virol 72, 156–161.[CrossRef] [Google Scholar]
  2. Estes, M. K. & Kapikian, A. Z.(2007). Rotaviruses and their replication. In Fields Virology, 5th edn, pp. 1917–1974. Edited by B. N. Fields, D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia, PA: Lippincott, Williams & Wilkins.
  3. Gentsch, J. R., Glass, R. I., Woods, P., Gouvea, V., Gorziglia, M., Flores, J., Das, B. K. & Bhan, M. K.(1992). Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol 30, 1365–1373. [Google Scholar]
  4. Ghosh, S., Varghese, V., Samajdar, S., Bhattacharya, S. K., Kobayashi, N. & Naik, T. N.(2006). Molecular characterization of a porcine group A rotavirus strain with G12 genotype specificity. Arch Virol 151, 1329–1344.[CrossRef] [Google Scholar]
  5. Ghosh, S., Kobayashi, N., Nagashima, S., Chawla-Sarkar, M., Krishnan, T., Ganesh, B. & Naik, T. N.(2010). Full genomic analysis and possible origin of a porcine G12 rotavirus strain RU172. Virus Genes 40, 382–388.[CrossRef] [Google Scholar]
  6. Heiman, E. M., McDonald, S. M., Barro, M., Taraporewala, Z. F., Bar-Magen, T. & Patton, J. T.(2008). Group A human rotavirus genomics: evidence that gene constellations are influenced by viral protein interactions. J Virol 82, 11106–11116.[CrossRef] [Google Scholar]
  7. Herring, A. J., Inglis, N. F., Ojeh, C. K., Snodgrass, D. R. & Menzies, J. D.(1982). Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels. J Clin Microbiol 16, 473–477. [Google Scholar]
  8. Isegawa, Y., Nakagomi, O., Nakagomi, T., Ishida, S., Uesugi, S. & Ueda, S.(1993). Determination of bovine rotavirus G and P serotypes by polymerase chain reaction. Mol Cell Probes 7, 277–284.[CrossRef] [Google Scholar]
  9. Kaminjolo, J. S. & Adesiyun, A. A.(1994). Rotavirus infection in calves, piglets, lambs and goat kids in Trinidad. Br Vet J 150, 293–299.[CrossRef] [Google Scholar]
  10. Lee, J. B., Youn, S. J., Nakagomi, T., Park, S. Y., Kim, T. J., Song, C. S., Jang, H. K., Kim, B. S. & Nakagomi, O.(2003). Isolation, serologic and molecular characterization of the first G3 caprine rotavirus. Arch Virol 148, 643–657.[CrossRef] [Google Scholar]
  11. Matthijnssens, J., Rahman, M., Yang, X., Delbeke, T., Arijs, I., Kabue, J. P., Muyembe, J. J. & Van Ranst, M.(2006). G8 rotavirus strains isolated in the Democratic Republic of Congo belong to the DS-1-like genogroup. J Clin Microbiol 44, 1801–1809.[CrossRef] [Google Scholar]
  12. Matthijnssens, J., Ciarlet, M., Heiman, E., Arijs, I., Delbeke, T., McDonald, S. M., Palombo, E. A., Iturriza-Gómara, M., Maes, P. & other authors(2008a). Full genome-based classification of rotaviruses reveals a common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82, 3204–3219.[CrossRef] [Google Scholar]
  13. Matthijnssens, J., Ciarlet, M., Rahman, M., Attoui, H., Bányai, K., Estes, M. K., Gentsch, J. R., Iturriza-Gómara, M., Kirkwood, C. D. & other authors(2008b). Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 153, 1621–1629.[CrossRef] [Google Scholar]
  14. Matthijnssens, J., Rahman, M. & Van Ranst, M.(2008c). Two out of the 11 genes of an unusual human G6P[6] rotavirus isolate are of bovine origin. J Gen Virol 89, 2630–2635.[CrossRef] [Google Scholar]
  15. Matthijnssens, J., Potgieter, C. A., Ciarlet, M., Parreño, V., Martella, V., Bányai, K., Garaicoechea, L., Palombo, E. A., Novo, L. & other authors(2009). Are human P[14] rotavirus strains the result of interspecies transmissions from sheep or other ungulates that belong to the mammalian order Artiodactyla? J Virol 83, 2917–2929.[CrossRef] [Google Scholar]
  16. Matthijnssens, J., Rahman, M., Ciarlet, M., Zeller, M., Heylen, E., Nakagomi, T., Uchida, R., Hassan, Z., Azim, T. & other authors(2010a). Reassortment of human rotavirus gene segments into G11 rotavirus strains. Emerg Infect Dis 16, 625–630.[CrossRef] [Google Scholar]
  17. Matthijnssens, J., Taraporewala, Z. F., Yang, H., Rao, S., Yuan, L., Cao, D., Hoshino, Y., Mertens, P. P., Carner, G. R. & other authors(2010b). Simian rotaviruses possess divergent gene constellations that originated from interspecies transmission and reassortment. J Virol 84, 2013–2026.[CrossRef] [Google Scholar]
  18. Mendes, V. M., De Beer, M. C., Goosen, G. H. & Steele, A. D.(1994). Isolation and preliminary characterization of a caprine rotavirus. Onderstepoort J Vet Res 61, 291–294. [Google Scholar]
  19. Muñoz, M., Alvarez, M., Lanza, I. & Cármenes, P.(1996). Role of enteric pathogens in the aetiology of neonatal diarrhoea in lambs and goat kids in Spain. Epidemiol Infect 117, 203–211.[CrossRef] [Google Scholar]
  20. Paul, S. K., Kobayashi, N., Nagashima, S., Ishino, M., Watanabe, S., Alam, M. M., Ahmed, M. U., Hossain, M. A. & Naik, T. N.(2008). Phylogenetic analysis of rotaviruses with genotypes G1, G2, G9 and G12 in Bangladesh: evidence for a close relationship between rotaviruses from children and adults. Arch Virol 153, 1999–2012.[CrossRef] [Google Scholar]
  21. Pongsuwanna, Y., Guntapong, R., Chiwakul, M., Tacharoenmuang, R., Onvimala, N., Wakuda, M., Kobayashi, N. & Taniguchi, K.(2002). Detection of a human rotavirus with G12 and P[9] specificity in Thailand. J Clin Microbiol 40, 1390–1394.[CrossRef] [Google Scholar]
  22. Pratelli, A., Martella, V., Tempesta, M. & Buonavoglia, C.(1999). Characterization by polymerase chain reaction of ruminant rotaviruses isolated in Italy. New Microbiol 22, 105–109. [Google Scholar]
  23. Rahman, M., Matthijnssens, J., Yang, X., Delbeke, T., Arijs, I., Taniguchi, K., Iturriza-Gómara, M., Iftekharuddin, N., Azim, T. & Van Ranst, M.(2007). Evolutionary history and global spread of the emerging G12 human rotaviruses. J Virol 81, 2382–2390.[CrossRef] [Google Scholar]
  24. Rao, C. D., Jagannath, M. R., Varshney, B. C., Das, M. & Reddy, B. S. Y.(2003). Genomic diversity through gene reassortment and antigenic drift and molecular epidemiology of rotaviruses in India. In Genomic Diversity and Molecular Epidemiology of Rotaviruses, pp. 55–74. Edited by Kobayashi & N. Trivandrum. India: Research Signpost.
  25. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  26. Schumann, T., Hotzel, H., Otto, P. & Johne, R.(2009). Evidence of interspecies transmission and reassortment among avian group A rotaviruses. Virology 386, 334–343.[CrossRef] [Google Scholar]
  27. Scott, A. C., Luddington, J., Lucas, M. & Gilbert, F. R.(1978). Rotavirus in goats. Vet Rec 103, 145 [Google Scholar]
  28. Solberg, O. D., Hasing, M. E., Trueba, G. & Eisenberg, J. N.(2009). Characterization of novel VP7, VP4, and VP6 genotypes of a previously untypeable group A rotavirus. Virology 385, 58–67.[CrossRef] [Google Scholar]
  29. Takahashi, E., Inaba, Y., Sato, K., Kurogi, H., Akashi, H., Satoda, K. & Omori, T.(1979). Antibody to rotavirus in various animal species. Natl Inst Anim Health Q (Tokyo) 19, 72–73. [Google Scholar]
  30. Taniguchi, K., Wakasugi, F., Pongsuwanna, Y., Urasawa, T., Ukae, S., Chiba, S. & Urasawa, S.(1992). Identification of human and bovine rotavirus serotypes by polymerase chain reaction. Epidemiol Infect 109, 303–312.[CrossRef] [Google Scholar]
  31. Trojnar, E., Otto, P. & Johne, R.(2009). The first complete genome sequence of a chicken group A rotavirus indicates independent evolution of mammalian and avian strains. Virology 386, 325–333.[CrossRef] [Google Scholar]
  32. Tsugawa, T. & Hoshino, Y.(2008). Whole genome sequence and phylogenetic analyses reveal human rotavirus G3P[3] strains Ro1845 and HCR3A are examples of direct virion transmission of canine/feline rotaviruses to humans. Virology 380, 344–353.[CrossRef] [Google Scholar]
  33. Ursu, K., Kisfali, P., Rigó, D., Ivanics, E., Erdélyi, K., Dán, A., Melegh, B., Martella, V. & Bányai, K.(2009). Molecular analysis of the VP7 gene of pheasant rotaviruses identifies a new genotype, designated G23. Arch Virol 154, 1365–1369.[CrossRef] [Google Scholar]
  34. Wang, Y. H., Kobayashi, N., Zhou, D. J., Yang, Z. Q., Zhou, X., Peng, J. S., Zhu, Z. R., Zhao, D. F., Liu, M. Q. & Gong, J.(2007). Molecular epidemiologic analysis of group A rotaviruses in adults and children with diarrhea in Wuhan city, China, 2000–2006. Arch Virol 152, 669–685.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.022244-0
Loading
/content/journal/jgv/10.1099/vir.0.022244-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2367–2373

Additional primers used for amplification of the full-length VP3, VP4, VP6, NSP1, NSP4 and NSP5 genes of caprine group A rotavirus strain GO34 [ PDF] (50 KB)



PDF

Most cited Most Cited RSS feed