1887

Abstract

The vaccinia virus E3 protein is an important intracellular modulator of innate immunity that can be split into distinct halves. The C terminus contains a well defined dsRNA-binding domain, whereas the N terminus contains a Z-DNA-binding domain, and both domains are required for virulence. In this study, we investigated whether the E3 Z-DNA-binding domain functions by sequestering cytoplasmic dsDNA thereby preventing the induction of type I interferon (IFN). In line with this hypothesis, expression of E3 ablated both IFN- expression and NF-B activity in response to the dsDNA, poly(dA–dT). However, surprisingly, the ability of E3 to block poly(dA–dT) signalling was independent of the N terminus, whereas the dsRNA-binding domain was essential, suggesting that the Z-DNA-binding domain does not bind immunostimulatory dsDNA. This was confirmed by the failure of E3 to co-precipitate with biotinylated dsDNA, whereas the recruitment of several cytoplasmic DNA-binding proteins could be detected. Recently, AT-rich dsDNA was reported to be transcribed into 5′-triphosphate poly(A-U) RNA by RNA polymerase III, which then activates retinoic acid-inducible gene I (RIG-I). Consistent with this, RNA from poly(dA–dT) transfected cells induced IFN- and expression of the E3 dsRNA-binding domain was sufficient to ablate this response. Given the well documented function of the E3 dsRNA-binding domain we propose that E3 blocks signalling in response to poly(dA–dT) by binding to transcribed poly(A-U) RNA preventing RIG-I activation. This report describes a DNA virus-encoded inhibitor of the RNA polymerase III-dsDNA-sensing pathway and extends our knowledge of E3 as a modulator of innate immunity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.021998-0
2010-09-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/9/2221.html?itemId=/content/journal/jgv/10.1099/vir.0.021998-0&mimeType=html&fmt=ahah

References

  1. Ablasser, A., Bauernfeind, F., Hartmann, G., Latz, E., Fitzgerald, K. A. & Hornung, V. ( 2009; ). RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10, 1065–1072.[CrossRef]
    [Google Scholar]
  2. Alcami, A. & Smith, G. L. ( 1992; ). A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71, 153–167.[CrossRef]
    [Google Scholar]
  3. Brandt, T. A. & Jacobs, B. L. ( 2001; ). Both carboxy- and amino-terminal domains of the vaccinia virus interferon resistance gene, E3L, are required for pathogenesis in a mouse model. J Virol 75, 850–856.[CrossRef]
    [Google Scholar]
  4. Brandt, T., Heck, M. C., Vijaysri, S., Jentarra, G. M., Cameron, J. M. & Jacobs, B. L. ( 2005; ). The N-terminal domain of the vaccinia virus E3L-protein is required for neurovirulence, but not induction of a protective immune response. Virology 333, 263–270.[CrossRef]
    [Google Scholar]
  5. Burckstummer, T., Baumann, C., Bluml, S., Dixit, E., Durnberger, G., Jahn, H., Planyavsky, M., Bilban, M., Colinge, J. & other authors ( 2009; ). An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10, 266–272.[CrossRef]
    [Google Scholar]
  6. Carroll, K., Elroy-Stein, O., Moss, B. & Jagus, R. ( 1993; ). Recombinant vaccinia virus K3L gene product prevents activation of double-stranded RNA-dependent, initiation factor 2α-specific protein kinase. J Biol Chem 268, 12837–12842.
    [Google Scholar]
  7. Chang, H. W. & Jacobs, B. L. ( 1993; ). Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA. Virology 194, 537–547.[CrossRef]
    [Google Scholar]
  8. Chang, H. W., Watson, J. C. & Jacobs, B. L. ( 1992; ). The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A 89, 4825–4829.[CrossRef]
    [Google Scholar]
  9. Chang, H. W., Uribe, L. H. & Jacobs, B. L. ( 1995; ). Rescue of vaccinia virus lacking the E3L gene by mutants of E3L. J Virol 69, 6605–6608.
    [Google Scholar]
  10. Chen, R. A., Ryzhakov, G., Cooray, S., Randow, F. & Smith, G. L. ( 2008; ). Inhibition of IκB kinase by vaccinia virus virulence factor B14. PLoS Pathog 4, e22 [CrossRef]
    [Google Scholar]
  11. Chiu, Y. H., Macmillan, J. B. & Chen, Z. J. ( 2009; ). RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591.[CrossRef]
    [Google Scholar]
  12. Choi, M. K., Wang, Z., Ban, T., Yanai, H., Lu, Y., Koshiba, R., Nakaima, Y., Hangai, S., Savitsky, D. & other authors ( 2009; ). A selective contribution of the RIG-I-like receptor pathway to type I interferon responses activated by cytosolic DNA. Proc Natl Acad Sci U S A 106, 17870–17875.[CrossRef]
    [Google Scholar]
  13. Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. ( 2009; ). AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513.[CrossRef]
    [Google Scholar]
  14. Gedey, R., Jin, X. L., Hinthong, O. & Shisler, J. L. ( 2006; ). Poxviral regulation of the host NF-κB response: the vaccinia virus M2L protein inhibits induction of NF-κB activation via an ERK2 pathway in virus-infected human embryonic kidney cells. J Virol 80, 8676–8685.[CrossRef]
    [Google Scholar]
  15. Grandvaux, N., Servant, M. J., tenOever, B., Sen, G. C., Balachandran, S., Barber, G. N., Lin, R. & Hiscott, J. ( 2002; ). Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol 76, 5532–5539.[CrossRef]
    [Google Scholar]
  16. Hayden, M. S. & Ghosh, S. ( 2008; ). Shared principles in NF-κB signaling. Cell 132, 344–362.[CrossRef]
    [Google Scholar]
  17. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H. & other authors ( 2000; ). A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.[CrossRef]
    [Google Scholar]
  18. Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D. R., Latz, E. & Fitzgerald, K. A. ( 2009; ). AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518.[CrossRef]
    [Google Scholar]
  19. Ishii, K. J., Coban, C., Kato, H., Takahashi, K., Torii, Y., Takeshita, F., Ludwig, H., Sutter, G., Suzuki, K. & other authors ( 2006; ). A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 7, 40–48.[CrossRef]
    [Google Scholar]
  20. Kaiser, W. J., Upton, J. W. & Mocarski, E. S. ( 2008; ). Receptor-interacting protein homotypic interaction motif-dependent control of NF-κB activation via the DNA-dependent activator of IFN regulatory factors. J Immunol 181, 6427–6434.[CrossRef]
    [Google Scholar]
  21. Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K. J., Takeuchi, O. & Akira, S. ( 2005; ). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6, 981–988.[CrossRef]
    [Google Scholar]
  22. Kim, Y. G., Muralinath, M., Brandt, T., Pearcy, M., Hauns, K., Lowenhaupt, K., Jacobs, B. L. & Rich, A. ( 2003; ). A role for Z-DNA binding in vaccinia virus pathogenesis. Proc Natl Acad Sci U S A 100, 6974–6979.[CrossRef]
    [Google Scholar]
  23. Kwon, J. A. & Rich, A. ( 2005; ). Biological function of the vaccinia virus Z-DNA-binding protein E3L: gene transactivation and antiapoptotic activity in HeLa cells. Proc Natl Acad Sci U S A 102, 12759–12764.[CrossRef]
    [Google Scholar]
  24. Langland, J. O., Kash, J. C., Carter, V., Thomas, M. J., Katze, M. G. & Jacobs, B. L. ( 2006; ). Suppression of proinflammatory signal transduction and gene expression by the dual nucleic acid binding domains of the vaccinia virus E3L proteins. J Virol 80, 10083–10095.[CrossRef]
    [Google Scholar]
  25. Marq, J. B., Hausmann, S., Luban, J., Kolakofsky, D. & Garcin, D. ( 2009; ). The double-stranded RNA binding domain of the vaccinia virus E3L protein inhibits both RNA- and DNA-induced activation of interferon β. J Biol Chem 284, 25471–25478.[CrossRef]
    [Google Scholar]
  26. Moss, B. ( 2007; ). Poxviridae: the viruses and their replication. In Fields Virology, 5th edn, pp. 2905–2946. Edited by D. M. Knipe: Philadelphia, PA: Lippincott Williams & Wilkins.
  27. Perdiguero, B. & Esteban, M. ( 2009; ). The interferon system and vaccinia virus evasion mechanisms. J Interferon Cytokine Res 29, 581–598.[CrossRef]
    [Google Scholar]
  28. Randall, R. E. & Goodbourn, S. ( 2008; ). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89, 1–47.[CrossRef]
    [Google Scholar]
  29. Reading, P. C., Moore, J. B. & Smith, G. L. ( 2003; ). Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. J Exp Med 197, 1269–1278.[CrossRef]
    [Google Scholar]
  30. Rich, A. & Zhang, S. ( 2003; ). Timeline: Z-DNA: the long road to biological function. Nat Rev Genet 4, 566–572.
    [Google Scholar]
  31. Roberts, T. L., Idris, A., Dunn, J. A., Kelly, G. M., Burnton, C. M., Hodgson, S., Hardy, L. L., Garceau, V., Sweet, M. J. & other authors ( 2009; ). HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060.[CrossRef]
    [Google Scholar]
  32. Seet, B. T., Johnston, J. B., Brunetti, C. R., Barrett, J. W., Everett, H., Cameron, C., Sypula, J., Nazarian, S. H., Lucas, A. & other authors ( 2003; ). Poxviruses and immune evasion. Annu Rev Immunol 21, 377–423.[CrossRef]
    [Google Scholar]
  33. Symons, J. A., Alcami, A. & Smith, G. L. ( 1995; ). Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81, 551–560.[CrossRef]
    [Google Scholar]
  34. Takaoka, A., Wang, Z., Choi, M. K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., Kodama, T. & other authors ( 2007; ). DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505.[CrossRef]
    [Google Scholar]
  35. Wang, Z., Choi, M. K., Ban, T., Yanai, H., Negishi, H., Lu, Y., Tamura, T., Takaoka, A., Nishikura, K. & other authors ( 2008; ). Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci U S A 105, 5477–5482.[CrossRef]
    [Google Scholar]
  36. Watson, J. C., Chang, H. W. & Jacobs, B. L. ( 1991; ). Characterization of a vaccinia virus-encoded double-stranded RNA-binding protein that may be involved in inhibition of the double-stranded RNA-dependent protein kinase. Virology 185, 206–216.[CrossRef]
    [Google Scholar]
  37. Xiang, Y., Condit, R. C., Vijaysri, S., Jacobs, B., Williams, B. R. & Silverman, R. H. ( 2002; ). Blockade of interferon induction and action by the E3L double-stranded RNA binding proteins of vaccinia virus. J Virol 76, 5251–5259.[CrossRef]
    [Google Scholar]
  38. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S. & Fujita, T. ( 2004; ). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5, 730–737.[CrossRef]
    [Google Scholar]
  39. Yuwen, H., Cox, J. H., Yewdell, J. W., Bennink, J. R. & Moss, B. ( 1993; ). Nuclear localization of a double-stranded RNA-binding protein encoded by the vaccinia virus E3L gene. Virology 195, 732–744.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.021998-0
Loading
/content/journal/jgv/10.1099/vir.0.021998-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error