1887

Abstract

In the absence of a viable ‘knockout’ mouse, researchers have relied extensively on monoclonal antibody (mAb) RB6-8C5 [anti-granulocyte receptor 1 (Gr-1)] to deplete neutrophils in murine models of inflammation and infection. Using an intranasal model of herpes simplex virus type 1 (HSV-1) infection, we demonstrate that mAb RB6-8C5 also binds to plasmacytoid dendritic cells, F4/80 macrophages/monocytes and CD8 T cells recovered from the airways of HSV-1-infected mice. In contrast, mAb 1A8 (anti-Ly6G) bound specifically to Ly6G neutrophils. Following intranasal infection of C57BL/6 mice with HSV-1, few Ly6G neutrophils were recruited to the airways and treatment of mice with purified mAb 1A8 induced systemic neutropenia, but did not alter virus replication or disease progression. In contrast, treatment of HSV-1-infected mice with mAb RB6-8C5 led to exacerbated virus replication, disease severity and mortality. These findings highlight the limitations associated with widespread use of antibody-mediated depletion of Gr-1 cells to define the role of neutrophils . Furthermore, we use mAb 1A8 to demonstrate that specific depletion of neutrophils does not modulate disease or alter virus replication following intranasal infection with HSV-1.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.021915-0
2010-09-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/9/2158.html?itemId=/content/journal/jgv/10.1099/vir.0.021915-0&mimeType=html&fmt=ahah

References

  1. Abadie, V., Badell, E., Douillard, P., Ensergueix, D., Leenen, P. J., Tanguy, M., Fiette, L., Saeland, S., Gicquel, B. & Winter, N. ( 2005; ). Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106, 1843–1850.[CrossRef]
    [Google Scholar]
  2. Banerjee, K., Biswas, P. S., Kim, B., Lee, S. & Rouse, B. T. ( 2004; ). CXCR2−/− mice show enhanced susceptibility to herpetic stromal keratitis: a role for IL-6-induced neovascularization. J Immunol 172, 1237–1245.[CrossRef]
    [Google Scholar]
  3. Bauer, D., Wasmuth, S., Hermans, P., Hennig, M., Meller, K., Meller, D., van Rooijen, N., Tseng, S. C., Steuhl, K. P. & Heiligenhaus, A. ( 2007; ). On the influence of neutrophils in corneas with necrotizing HSV-1 keratitis following amniotic membrane transplantation. Exp Eye Res 85, 335–345.[CrossRef]
    [Google Scholar]
  4. Beaty, S. R., Rose, C. E., Jr & Sung, S. S. ( 2007; ). Diverse and potent chemokine production by lung CD11bhigh dendritic cells in homeostasis and in allergic lung inflammation. J Immunol 178, 1882–1895.[CrossRef]
    [Google Scholar]
  5. Beauvillain, C., Delneste, Y., Scotet, M., Peres, A., Gascan, H., Guermonprez, P., Barnaba, V. & Jeannin, P. ( 2007; ). Neutrophils efficiently cross-prime naive T cells in vivo. Blood 110, 2965–2973.[CrossRef]
    [Google Scholar]
  6. Chen, W., Tang, Q. & Hendricks, R. L. ( 1996; ). Ex vivo model of leukocyte migration into herpes simplex virus-infected mouse corneas. J Leukoc Biol 60, 167–173.
    [Google Scholar]
  7. Daheshia, M., Kanangat, S. & Rouse, B. T. ( 1998; ). Production of key molecules by ocular neutrophils early after herpetic infection of the cornea. Exp Eye Res 67, 619–624.[CrossRef]
    [Google Scholar]
  8. Daley, J. M., Thomay, A. A., Connolly, M. D., Reichner, J. S. & Albina, J. E. ( 2008; ). Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol 83, 64–70.
    [Google Scholar]
  9. Divito, S. J. & Hendricks, R. L. ( 2008; ). Activated inflammatory infiltrate in HSV-1-infected corneas without herpes stromal keratitis. Invest Ophthalmol Vis Sci 49, 1488–1495.[CrossRef]
    [Google Scholar]
  10. Egan, C. E., Sukhumavasi, W., Bierly, A. L. & Denkers, E. Y. ( 2008; ). Understanding the multiple functions of Gr-1+ cell subpopulations during microbial infection. Immunol Res 40, 35–48.[CrossRef]
    [Google Scholar]
  11. Fleming, T. J., Fleming, M. L. & Malek, T. R. ( 1993; ). Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6–8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol 151, 2399–2408.
    [Google Scholar]
  12. Geissmann, F., Jung, S. & Littman, D. R. ( 2003; ). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82.[CrossRef]
    [Google Scholar]
  13. Han, Y. & Cutler, J. E. ( 1997; ). Assessment of a mouse model of neutropenia and the effect of an anti-candidiasis monoclonal antibody in these animals. J Infect Dis 175, 1169–1175.[CrossRef]
    [Google Scholar]
  14. Henderson, R. B., Hobbs, J. A., Mathies, M. & Hogg, N. ( 2003; ). Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood 102, 328–335.[CrossRef]
    [Google Scholar]
  15. Hendricks, R. L. & Tumpey, T. M. ( 1990; ). Contribution of virus and immune factors to herpes simplex virus type I-induced corneal pathology. Invest Ophthalmol Vis Sci 31, 1929–1939.
    [Google Scholar]
  16. Kirby, A. C., Raynes, J. G. & Kaye, P. M. ( 2006; ). CD11b regulates recruitment of alveolar macrophages but not pulmonary dendritic cells after pneumococcal challenge. J Infect Dis 193, 205–213.[CrossRef]
    [Google Scholar]
  17. Liu, T., Tang, Q. & Hendricks, R. L. ( 1996; ). Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection. J Virol 70, 264–271.
    [Google Scholar]
  18. Marques, C. P., Cheeran, M. C., Palmquist, J. M., Hu, S., Urban, S. L. & Lokensgard, J. R. ( 2008; ). Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis. J Immunol 181, 6417–6426.[CrossRef]
    [Google Scholar]
  19. Matsuzaki, J., Tsuji, T., Chamoto, K., Takeshima, T., Sendo, F. & Nishimura, T. ( 2003; ). Successful elimination of memory-type CD8+ T cell subsets by the administration of anti-Gr-1 monoclonal antibody in vivo. Cell Immunol 224, 98–105.[CrossRef]
    [Google Scholar]
  20. McLachlan, E., Hu, P. & Geczy, C. ( 2007; ). Neutrophils rarely invade dorsal root ganglia after peripheral nerve lesions. J Neuroimmunol 187, 212–213.[CrossRef]
    [Google Scholar]
  21. Miller, A. L., Bowlin, T. L. & Lukacs, N. W. ( 2004; ). Respiratory syncytial virus-induced chemokine production: linking viral replication to chemokine production in vitro and in vivo. J Infect Dis 189, 1419–1430.[CrossRef]
    [Google Scholar]
  22. Milligan, G. N. ( 1999; ). Neutrophils aid in protection of the vaginal mucosae of immune mice against challenge with herpes simplex virus type 2. J Virol 73, 6380–6386.
    [Google Scholar]
  23. Milligan, G. N., Bourne, N. & Dudley, K. L. ( 2001; ). Role of polymorphonuclear leukocytes in resolution of HSV-2 infection of the mouse vagina. J Reprod Immunol 49, 49–65.[CrossRef]
    [Google Scholar]
  24. Molesworth-Kenyon, S. J., Oakes, J. E. & Lausch, R. N. ( 2005; ). A novel role for neutrophils as a source of T cell-recruiting chemokines IP-10 and Mig during the DTH response to HSV-1 antigen. J Leukoc Biol 77, 552–559.
    [Google Scholar]
  25. Morin, N., Owolabi, S. A., Harty, M. W., Papa, E. F., Tracy, T. F., Jr, Shaw, S. K., Kim, M. & Saab, C. Y. ( 2007; ). Neutrophils invade lumbar dorsal root ganglia after chronic constriction injury of the sciatic nerve. J Neuroimmunol 184, 164–171.[CrossRef]
    [Google Scholar]
  26. Nakano, H., Yanagita, M. & Gunn, M. D. ( 2001; ). CD11c+B220+Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 194, 1171–1178.[CrossRef]
    [Google Scholar]
  27. Nguyen, H. X., O'Barr, T. J. & Anderson, A. J. ( 2007; ). Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-α. J Neurochem 102, 900–912.[CrossRef]
    [Google Scholar]
  28. Palamara, F., Meindl, S., Holcmann, M., Luhrs, P., Stingl, G. & Sibilia, M. ( 2004; ). Identification and characterization of pDC-like cells in normal mouse skin and melanomas treated with imiquimod. J Immunol 173, 3051–3061.[CrossRef]
    [Google Scholar]
  29. Perrone, L. A., Plowden, J. K., Garcia-Sastre, A., Katz, J. M. & Tumpey, T. M. ( 2008; ). H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog 4, e1000115 [CrossRef]
    [Google Scholar]
  30. Reading, P. C., Whitney, P. G., Barr, D. P., Smyth, M. J. & Brooks, A. G. ( 2006; ). NK cells contribute to the early clearance of HSV-1 from the lung but cannot control replication in the central nervous system following intranasal infection. Eur J Immunol 36, 897–905.[CrossRef]
    [Google Scholar]
  31. Reading, P. C., Whitney, P. G., Barr, D. P., Wojtasiak, M., Mintern, J. D., Waithman, J. & Brooks, A. G. ( 2007; ). IL-18, but not IL-12, regulates NK cell activity following intranasal herpes simplex virus type 1 infection. J Immunol 179, 3214–3221.[CrossRef]
    [Google Scholar]
  32. Ryu, J. K., Tran, K. C. & McLarnon, J. G. ( 2007; ). Depletion of neutrophils reduces neuronal degeneration and inflammatory responses induced by quinolinic acid in vivo. Glia 55, 439–451.[CrossRef]
    [Google Scholar]
  33. Seiler, P., Aichele, P., Bandermann, S., Hauser, A. E., Lu, B., Gerard, N. P., Gerard, C., Ehlers, S., Mollenkopf, H. J. & Kaufmann, S. H. ( 2003; ). Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol 33, 2676–2686.[CrossRef]
    [Google Scholar]
  34. Shaw, S. K., Owolabi, S. A., Bagley, J., Morin, N., Cheng, E., LeBlanc, B. W., Kim, M., Harty, P., Waxman, S. G. & Saab, C. Y. ( 2008; ). Activated polymorphonuclear cells promote injury and excitability of dorsal root ganglia neurons. Exp Neurol 210, 286–294.[CrossRef]
    [Google Scholar]
  35. Simmons, A., Tscharke, D. & Speck, P. ( 1992; ). The role of immune mechanisms in control of herpes simplex virus infection of the peripheral nervous system. Curr Top Microbiol Immunol 179, 31–56.
    [Google Scholar]
  36. Sköldenberg, B. ( 1996; ). Herpes simplex encephalitis. Scand J Infect Dis Suppl 100, 8–13.
    [Google Scholar]
  37. Smit, J. J., Rudd, B. D. & Lukacs, N. W. ( 2006; ). Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J Exp Med 203, 1153–1159.[CrossRef]
    [Google Scholar]
  38. Stumpf, T. H., Case, R., Shimeld, C., Easty, D. L. & Hill, T. J. ( 2002; ). Primary herpes simplex virus type 1 infection of the eye triggers similar immune responses in the cornea and the skin of the eyelids. J Gen Virol 83, 1579–1590.
    [Google Scholar]
  39. Taoka, Y., Okajima, K., Uchiba, M., Murakami, K., Kushimoto, S., Johno, M., Naruo, M., Okabe, H. & Takatsuki, K. ( 1997; ). Role of neutrophils in spinal cord injury in the rat. Neuroscience 79, 1177–1182.[CrossRef]
    [Google Scholar]
  40. Tate, M. D., Brooks, A. G. & Reading, P. C. ( 2008; ). The role of neutrophils in the upper and lower respiratory tract during influenza virus infection of mice. Respir Res 9, 57 [CrossRef]
    [Google Scholar]
  41. Tate, M. D., Deng, Y. M., Jones, J. E., Anderson, G. P., Brooks, A. G. & Reading, P. C. ( 2009; ). Neutrophils ameliorate lung injury and the development of severe disease during influenza infection. J Immunol 183, 7441–7450.[CrossRef]
    [Google Scholar]
  42. Thomas, J., Gangappa, S., Kanangat, S. & Rouse, B. T. ( 1997; ). On the essential involvement of neutrophils in the immunopathologic disease: herpetic stromal keratitis. J Immunol 158, 1383–1391.
    [Google Scholar]
  43. Tumpey, T. M., Chen, S. H., Oakes, J. E. & Lausch, R. N. ( 1996; ). Neutrophil-mediated suppression of virus replication after herpes simplex virus type 1 infection of the murine cornea. J Virol 70, 898–904.
    [Google Scholar]
  44. Tumpey, T. M., Garcia-Sastre, A., Taubenberger, J. K., Palese, P., Swayne, D. E., Pantin-Jackwood, M. J., Schultz-Cherry, S., Solorzano, A., Van Rooijen, N. & other authors ( 2005; ). Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol 79, 14933–14944.[CrossRef]
    [Google Scholar]
  45. Tvinnereim, A. R., Hamilton, S. E. & Harty, J. T. ( 2004; ). Neutrophil involvement in cross-priming CD8+ T cell responses to bacterial antigens. J Immunol 173, 1994–2002.[CrossRef]
    [Google Scholar]
  46. van Lint, A., Ayers, M., Brooks, A. G., Coles, R. M., Heath, W. R. & Carbone, F. R. ( 2004; ). Herpes simplex virus-specific CD8+ T cells can clear established lytic infections from skin and nerves and can partially limit the early spread of virus after cutaneous inoculation. J Immunol 172, 392–397.[CrossRef]
    [Google Scholar]
  47. Vremec, D., Pooley, J., Hochrein, H., Wu, L. & Shortman, K. ( 2000; ). CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 164, 2978–2986.[CrossRef]
    [Google Scholar]
  48. Wallace, M. E., Keating, R., Heath, W. R. & Carbone, F. R. ( 1999; ). The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant. J Virol 73, 7619–7626.
    [Google Scholar]
  49. Watanabe, D., Adachi, A., Tomita, Y., Yamamoto, M., Kobayashi, M. & Nishiyama, Y. ( 1999; ). The role of polymorphonuclear leukocyte infiltration in herpes simplex virus infection of murine skin. Arch Dermatol Res 291, 28–36.[CrossRef]
    [Google Scholar]
  50. Whitley, R. J. & Roizman, B. ( 2001; ). Herpes simplex virus infections. Lancet 357, 1513–1518.[CrossRef]
    [Google Scholar]
  51. Wipke, B. T. & Allen, P. M. ( 2001; ). Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol 167, 1601–1608.[CrossRef]
    [Google Scholar]
  52. Worrell, J. T. & Cockerell, C. J. ( 1997; ). Histopathology of peripheral nerves in cutaneous herpesvirus infection. Am J Dermatopathol 19, 133–137.[CrossRef]
    [Google Scholar]
  53. Xiaoxiao, W., Sibiao, Y., Xiaopeng, X., Ping, Z. & Gang, C. ( 2007; ). Neutrophils induce the maturation of immature dendritic cells: a regulatory role of neutrophils in adaptive immune responses. Immunol Invest 36, 337–350.[CrossRef]
    [Google Scholar]
  54. Yamasaki, Y., Matsuo, Y., Zagorski, J., Matsuura, N., Onodera, H., Itoyama, Y. & Kogure, K. ( 1997; ). New therapeutic possibility of blocking cytokine-induced neutrophil chemoattractant on transient ischemic brain damage in rats. Brain Res 759, 103–111.[CrossRef]
    [Google Scholar]
  55. Yan, X. T., Tumpey, T. M., Kunkel, S. L., Oakes, J. E. & Lausch, R. N. ( 1998; ). Role of MIP-2 in neutrophil migration and tissue injury in the herpes simplex virus-1-infected cornea. Invest Ophthalmol Vis Sci 39, 1854–1862.
    [Google Scholar]
  56. Zheng, M., Fields, M. A., Liu, Y., Cathcart, H., Richter, E. & Atherton, S. S. ( 2008; ). Neutrophils protect the retina of the injected eye from infection after anterior chamber inoculation of HSV-1 in BALB/c mice. Invest Ophthalmol Vis Sci 49, 4018–4025.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.021915-0
Loading
/content/journal/jgv/10.1099/vir.0.021915-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error