Latent membrane protein 2A (LMP2A) is expressed in most Epstein–Barr virus (EBV)-associated malignancies. Besides its roles in the maintenance of latent infection and epithelial-cell transformation, LMP2A could also act as the target for a CTL-based therapy for EBV-associated malignancies. In the present study, sequence polymorphisms in LMP2A from northern Chinese EBV-associated gastric carcinoma patients, nasopharyngeal carcinoma patients and healthy donors were identified and compared with the prototype B95-8 strain. Four consistent mutations were detected in all isolates. Frequent mutations in the analysed sequences distinguished two and seven types of sequence variation in exon 1 and exons 2–8, respectively, with no consistent association shown between the genotyping of the two gene fragments. The immunoreceptor tyrosine-based activation motif and PY motif in the amino terminus were strictly conserved. Nine of the 16 identified CTL epitopes were affected by at least one point mutation, which may confer complexity to proposed immunotherapeutic approaches for EBV-associated malignancies. Most changed epitopes showed higher mutation rates in tumour isolates than in throat-washing samples from healthy donors, in accordance with the idea that virus strains can evade immune surveillance by altering amino acids within LMP epitopes. This first detailed investigation of sequence variations in the LMP2A gene reveals classifiable sequence polymorphisms in exon 1 and exons 2–8, and encourages further work on the impact of viral gene variations on tumour persistence and CTL-based immunotherapy.


Article metrics loading...

Loading full text...

Full text loading...



  1. Babcock, G. J., Hochberg, D. & Thorley-Lawson, A. D.(2000). The expression pattern of Epstein–Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13, 497–506.[CrossRef] [Google Scholar]
  2. Berger, C., Rothenberger, S., Bachmann, E., McQuain, C., Nadal, D. & Knecht, H.(1999). Sequence polymorphisms between latent membrane proteins LMP1 and LMP2A do not correlate in EBV-associated reactive and malignant lympho-proliferations. Int J Cancer 81, 371–375.[CrossRef] [Google Scholar]
  3. Burkhardt, A. L., Brunswick, M., Bolen, J. B. & Mond, J. J.(1991). Anti-immunoglobulin stimulation of B lymphocytes activates src-related protein-tyrosine kinases. Proc Natl Acad Sci U S A 88, 7410–7414.[CrossRef] [Google Scholar]
  4. Busson, P., Edwards, R. H., Tursz, T. & Raab-Traub, N.(1995). Sequence polymorphism in the Epstein–Barr virus latent membrane protein (LMP)-2 gene. J Gen Virol 76, 139–145.[CrossRef] [Google Scholar]
  5. Cambier, J. C. & Johnson, S. A.(1995). Differential binding activity of ARH1/TAM motifs. Immunol Lett 44, 77–80.[CrossRef] [Google Scholar]
  6. Chang, Y. S., Tyan, Y. S., Liu, S. T., Tsa, M. S. & Pao, C. C.(1990). Detection of Epstein–Barr virus DNA sequences in nasopharyngeal carcinoma cells by enzymatic DNA amplification. J Clin Microbiol 28, 2398–2402. [Google Scholar]
  7. Chang, K. L., Chen, Y. Y., Shibata, D. & Weiss, L. M.(1992). Description of an in situ hybridization methodology for detection of Epstein–Barr virus RNA in paraffin-embedded tissues, with a survey of normal and neoplastic tissues. Diagn Mol Pathol 1, 246–255.[CrossRef] [Google Scholar]
  8. Chen, F., Zou, J. Z., di Renzo, L., Winberg, G., Hu, L. F., Klein, E., Klein, G. & Ernberg, I.(1995). A subpopulation of normal B cells latently infected with Epstein–Barr virus resembles Burkitt lymphoma cells in expressing EBNA-1 but not EBNA-2 or LMP1. J Virol 69, 3752–3758. [Google Scholar]
  9. Chen, H., Smith, P., Ambinder, R. F. & Hayward, S. D.(1999). Expression of Epstein–Barr virus BamHI-A rightward transcripts in latently infected B cells from peripheral blood. Blood 93, 3026–3032. [Google Scholar]
  10. Chen, X. Z., Jiang, K., Hu, J. K., Zhang, B., Gou, H. F., Yang, K., Chen, Z. X. & Chen, J. P.(2008). Cost-effectiveness analysis of chemotherapy for advanced gastric cancer in China. World J Gastroenterol 14, 2715–2722.[CrossRef] [Google Scholar]
  11. de Campos-Lima, P. O., Gavioli, R., Zhang, Q. J., Wallace, L. E., Dolcetti, R., Rowe, M., Rickinson, A. B. & Masucci, M. G.(1993). HLA-A11 epitope loss isolates of Epstein–Barr virus from a highly A11+ population. Science 260, 98–100.[CrossRef] [Google Scholar]
  12. de Campos-Lima, P. O., Levitsky, V., Brooks, J., Lee, S. P., Hu, L. F., Rickinson, A. B. & Masucci, M. G.(1994). T cell responses and virus evolution, loss of HLA A11-restricted CTL epitopes in Epstein–Barr virus isolates from highly A11-positive populations by selective mutation of anchor residues. J Exp Med 179, 1297–1305.[CrossRef] [Google Scholar]
  13. Epstein, M. A., Achong, B. G. & Barr, Y. M.(1964). Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1, 702–705. [Google Scholar]
  14. Fruehling, S. & Longnecker, R.(1997). The immunoreceptor tyrosine-based activation motif of Epstein–Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235, 241–251.[CrossRef] [Google Scholar]
  15. Fruehling, S., Swart, R., Dolwick, K. M., Kremmer, E. & Longnecker, R.(1998). Tyrosine 112 of latent membrane protein 2A is essential for protein tyrosine kinase loading and regulation of Epstein–Barr virus latency. J Virol 72, 7796–7806. [Google Scholar]
  16. Fukuda, M. & Longnecker, R.(2004). Latent membrane protein 2A inhibits transforming growth factor-β1-induced apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. J Virol 78, 1697–1705.[CrossRef] [Google Scholar]
  17. Heller, K. N., Gurer, C. & Münz, C.(2006). Virus-specific CD4+ T cells: ready for direct attack. J Exp Med 203, 805–808.[CrossRef] [Google Scholar]
  18. Hochberg, D., Middeldorp, J. M., Catalina, M., Sullivan, J. L., Luzuriaga, K. & Thorley-Lawson, D. A.(2004). Demonstration of the Burkitt's lymphoma Epstein–Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A 101, 239–244.[CrossRef] [Google Scholar]
  19. Ikeda, M., Ikeda, A. & Longnecker, R.(2001). PY motifs of Epstein–Barr virus LMP2A regulate protein stability and phosphorylation of LMP2A-associated proteins. J Virol 75, 5711–5718.[CrossRef] [Google Scholar]
  20. Imai, S., Koizumi, S., Sugiura, M., Tokunaga, M., Uemura, Y., Yamamoto, N., Tanaka, S., Sato, E. & Osato, T.(1994). Gastric carcinoma, monoclonal epithelial malignant cells expressing Epstein–Barr virus latent infection protein. Proc Natl Acad Sci U S A 91, 9131–9135.[CrossRef] [Google Scholar]
  21. Khanna, R., Moss, D. J. & Burrows, S. R.(1999). Vaccine strategies against Epstein–Barr virus-associated diseases: lessons from studies on cytotoxic T-cell mediated immune regulation. Immunol Rev 170, 49–64.[CrossRef] [Google Scholar]
  22. Knecht, H., Bachmann, E., Brousset, P., Sandvej, K., Nadal, D., Bachmann, F., Odermatt, B. F., Delsol, G. & Pallesen, G.(1993). Deletions within the LMP1 oncogene of Epstein–Barr virus are clustered in Hodgkin's disease and identical to those observed in nasopharyngeal carcinoma. Blood 82, 2937–2942. [Google Scholar]
  23. Laux, G., Perricaudet, M. & Farrell, P. J.(1988). A spliced Epstein–Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J 7, 769–774. [Google Scholar]
  24. Lee, S. P., Tierney, R. J., Thomas, W. A., Brooks, J. M. & Rickinson, A. B.(1997). Conserved (CTL) epitopes within EBV latent membrane protein 2, a potential target for CTL-based tumour therapy. J Immunol 158, 3325–3334. [Google Scholar]
  25. Leoncini, L., Vindigni, C., Megha, T., Funtò, I., Pacenti, L., Musarò, M., Renieri, A., Seri, M., Anagnostopoulos, J. & Tosi, P.(1993). Epstein–Barr virus and gastric cancer: data and unanswered questions. Int J Cancer 53, 898–901. [Google Scholar]
  26. Longnecker, R. & Kieff, E.(1990). A second Epstein–Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. J Virol 64, 2319–2326. [Google Scholar]
  27. Longnecker, R. & Miller, C.(1996). Regulation of Epstein–Barr virus latency by latent membrane protein 2. Trends Microbiol 4, 38–42. [Google Scholar]
  28. Longnecker, R., Druker, B., Roberts, T. M. & Kieff, E.(1991). An Epstein–Barr virus protein associated with cell growth transformation interacts with a tyrosine kinase. J Virol 65, 3681–3692. [Google Scholar]
  29. Lung, M. L., Chang, R. S., Huang, M. L., Guo, H. Y., Choy, D., Sham, J., Tsao, S. Y., Cheng, P. & Ng, M. H.(1990). Epstein–Barr virus genotypes associated with nasopharyngeal carcinoma in southern China. Virology 177, 44–53.[CrossRef] [Google Scholar]
  30. Meij, P., Leen, A., Rickinson, A. B., Verkoeijen, S., Vervoort, M. B., Bloemena, E. & Middeldorp, J. M.(2002). Identification and prevalence of CD8+ T-cell responses directed against Epstein–Barr virus-encoded latent membrane protein 1 and latent membrane protein 2. Int J Cancer 99, 93–99.[CrossRef] [Google Scholar]
  31. Miller, C. L., Longnecker, R. & Kieff, E.(1993). Epstein–Barr virus latent membrane protein 2A blocks calcium mobilization in B lymphocytes. J Virol 67, 3087–3094. [Google Scholar]
  32. Miller, C. L., Lee, J. H., Kieff, E. & Longnecker, R.(1994). An integral membrane protein (LMP2) blocks reactivation of Epstein–Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci U S A 91, 772–776.[CrossRef] [Google Scholar]
  33. Miller, C. L., Burkhardt, A. L., Lee, J. H., Stealey, B., Longnecker, R., Bolen, J. B. & Kieff, E.(1995). Integral membrane protein 2 of Epstein–Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 2, 155–166.[CrossRef] [Google Scholar]
  34. Morrison, J. A. & Raab-Traub, N.(2005). Roles of the ITAM and PY motifs of Epstein–Barr virus latent membrane protein 2A in the inhibition of epithelial cell differentiation and activation of β-catenin signaling. J Virol 79, 2375–2382.[CrossRef] [Google Scholar]
  35. Morrison, J. A., Klingelhutz, A. J. & Raab-Traub, N.(2003). Epstein–Barr virus latent membrane protein 2A activates beta-catenin signaling in epithelial cells. J Virol 77, 12276–12284.[CrossRef] [Google Scholar]
  36. Murray, P. G., Constandinou, C. M., Crocker, J., Young, L. S. & Ambinder, R. F.(1998). Analysis of major histocompatibility complex class I, TAP expression, and LMP2 epitope sequence in Epstein–Barr virus-positive Hodgkin's disease. Blood 92, 2477–2483. [Google Scholar]
  37. Parker, K. C., Bednarek, M. A. & Coligan, J. E.(1994). Scheme for ranking potential HLA-A2 peptides based on independent binding of individual peptide side-chains. J Immunol 152, 163–175. [Google Scholar]
  38. Rickinson, A. B. & Moss, D. J.(1997). Human cytotoxic T lymphocyte responses to Epstein–Barr virus infection. Annu Rev Immunol 15, 405–431.[CrossRef] [Google Scholar]
  39. Sample, J., Liebowitz, D. & Kieff, E.(1989). Two related Epstein–Barr virus membrane proteins are encoded by separate genes. J Virol 63, 933–937. [Google Scholar]
  40. Scholle, F., Bendt, K. M. & Raab-Traub, N.(2000). Epstein–Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J Virol 74, 10681–10689.[CrossRef] [Google Scholar]
  41. Shibata, D. & Weiss, L. M.(1992). Epstein–Barr virus-associated gastric adenocarcinoma. Am J Pathol 140, 769–774. [Google Scholar]
  42. Songyang, Z., Shoelson, S. E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W. G., King, F., Roberts, T., Ratnofsky, S. & other authors(1993). SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778.[CrossRef] [Google Scholar]
  43. Suzushima, H., Asou, N., Fujimoto, T., Nishimura, S., Okubo, T., Yamasaki, H., Osato, M., Matsuoka, M., Tsukamoto, A. & Takai, K.(1995). Lack of the expression of EBNA-2 and LMP-1 in T-cell neoplasms possessing Epstein–Barr virus. Blood 85, 480–486. [Google Scholar]
  44. Tanaka, M., Kawaguchi, Y., Yokofujita, J., Takagi, M., Eishi, Y. & Hirai, K.(1999). Sequence variations of Epstein–Barr virus LMP2A gene in gastric carcinoma in Japan. Virus Genes 19, 103–111.[CrossRef] [Google Scholar]
  45. Tierney, R. J., Steven, N., Young, L. S. & Rickinson, A. B.(1994). Epstein–Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol 68, 7374–7385. [Google Scholar]
  46. Tokunaga, M., Uemura, Y., Tokudome, T., Ishidate, T., Masuda, H., Okazaki, E., Kaneko, K., Naoe, S., Ito, M. & Okamura, A.(1993). Epstein–Barr virus related gastric cancer in Japan, a molecular pathoepidemiological study. Acta Pathol Jpn 43, 574–581. [Google Scholar]
  47. Weiss, L. M., Strickler, J. G., Warnke, R. A., Purtilo, D. T. & Sklar, J.(1987). Epstein–Barr viral DNA in tissues of Hodgkin's disease. Am J Pathol 129, 86–91. [Google Scholar]
  48. Zeng, M. S., Li, D. J., Liu, Q. L., Song, L. B., Li, M. Z., Zhang, R. H., Yu, X. J., Wang, H. M., Ernberg, I. & Zeng, Y. X.(2005). Genomic sequence analysis of Epstein–Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J Virol 79, 15323–15330.[CrossRef] [Google Scholar]
  49. Zhang, N. H., Zhang, X. S., Li, J., Zhang, R. H., Gao, Y. F. & Zeng, M. S.(2006). Sequence analysis of the CTL epitopes in transmembrane region of latent membrane protein 2 of Epstein–Barr virus derived from nasopharyngeal carcinoma cells. Chin J Cancer 25, 566–569 (in Chinese). [Google Scholar]

Data & Media loading...


vol. , part 10, pp. 2564–2573

Primers and probes used in the present study

Full list of strains for patterns in LMP2A exon 1

Full list of strains for patterns in LMP2A exons 2–8

[ Single PDF file] (80 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error