1887

Abstract

In this territory-wide molecular epidemiology study of picornaviruses, involving 6765 dead wild birds from 201 species in 50 families over a 12 month period, three novel picornaviruses, turdiviruses 1, 2 and 3 (TV1, TV2 and TV3), were identified from birds of different genera in the family Turdidae. In contrast to many other viruses in birds of the family Turdidae or viruses of the family , TV1, TV2 and TV3 were found exclusively in the autumn and winter months. Two genomes each of TV1, TV2 and TV3 were sequenced. Regions P1, P2 and P3 of the three turdiviruses possessed, respectively, <40, <40 and <50 % amino acid identities with those of other picornaviruses. Moreover, P1, P2 and P3 of TV1 also possessed, respectively, <40, <40 and <50 % amino acid identities with those of TV2 and TV3. Phylogenetic analysis revealed that TV1, TV2 and TV3 were distantly related to members of the genus . Among the three turdiviruses, TV2 and TV3 were always clustered together, with high bootstrap supports of 1000. The genomic features of TV2 and TV3 were also distinct from TV1, including lower G+C contents, shorter leader protein and a preference for codon sequence NNT rather than NNC for amino acids that can use either NNT or NNC as codons (<0.001 by -test). Based on our results we propose two novel genera, for TV1, and for TV2 and TV3, in the family . The type of internal ribosomal entry site for TV1, TV2 and TV3 remains to be determined.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.021717-0
2010-10-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/10/2433.html?itemId=/content/journal/jgv/10.1099/vir.0.021717-0&mimeType=html&fmt=ahah

References

  1. Bazan, J. F. & Fletterick, R. J. ( 1988; ). Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci U S A 85, 7872–7876.[CrossRef]
    [Google Scholar]
  2. Belsham, G. J. ( 2008; ). Divergent picornavirus IRES elements. Virus Res 139, 183–192.
    [Google Scholar]
  3. Campbell, G. L., Marfin, A. A., Lanciotti, R. S. & Gubler, D. J. ( 2002; ). West Nile virus. Lancet Infect Dis 2, 519–529.[CrossRef]
    [Google Scholar]
  4. Chiu, C. Y., Greninger, A. L., Kanada, K., Kwok, T., Fischer, K. F., Runckel, C., Louie, J. K., Glaser, C. A., Yagi, S. & other authors ( 2008; ). Identification of cardioviruses related to Theiler's murine encephalomyelitis virus in human infections. Proc Natl Acad Sci U S A 105, 14124–14129.[CrossRef]
    [Google Scholar]
  5. Chow, M., Newman, J. F., Filman, D., Hogle, J. M., Rowlands, D. J. & Brown, F. ( 1987; ). Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327, 482–486.[CrossRef]
    [Google Scholar]
  6. Cohen, J. I., Ticehurst, J. R., Purcell, R. H., Buckler-White, A. & Baroudy, B. M. ( 1987; ). Complete nucleotide sequence of wild-type hepatitis A virus: comparison with different strains of hepatitis A virus and other picornaviruses. J Virol 61, 50–59.
    [Google Scholar]
  7. del Hoyo, J., Elliot, A. & Christie, D. A. ( 2005; ). Handbook of the Birds of the World, Cuckoo-Shrikes to Thrushes, vol. 10. Barcelona, Spain. : Lynx Edicions.
    [Google Scholar]
  8. Ellis, T. M., Bousfield, R. B., Bissett, L. A., Dyrting, K. C., Luk, G. S., Tsim, S. T., Sturm-Ramirez, K., Webster, R. G., Guan, Y. & Peiris, J. S. ( 2004; ). Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002. Avian Pathol 33, 492–505.[CrossRef]
    [Google Scholar]
  9. Fernandez-Miragall, O., Lopez de Quinto, S. & Martinez-Salas, E. ( 2009; ). Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Res 139, 172–182.[CrossRef]
    [Google Scholar]
  10. Gohara, D. W., Arnold, J. J. & Cameron, C. E. ( 2004; ). Poliovirus RNA-dependent RNA polymerase (3Dpol): kinetic, thermodynamic, and structural analysis of ribonucleotide selection. Biochemistry 43, 5149–5158.[CrossRef]
    [Google Scholar]
  11. Gorbalenya, A. E., Donchenko, A. P., Blinov, V. M. & Koonin, E. V. ( 1989a; ). Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett 243, 103–114.[CrossRef]
    [Google Scholar]
  12. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P. & Blinov, V. M. ( 1989b; ). Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 17, 4713–4730.[CrossRef]
    [Google Scholar]
  13. Gorbalenya, A. E., Koonin, E. V. & Wolf, Y. I. ( 1990; ). A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett 262, 145–148.[CrossRef]
    [Google Scholar]
  14. Gorbalenya, A. E., Koonin, E. V. & Lai, M. M. ( 1991; ). Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett 288, 201–205.[CrossRef]
    [Google Scholar]
  15. Greninger, A. L., Runckel, C., Chiu, C. Y., Haggerty, T., Parsonnet, J., Ganem, D. & DeRisi, J. L. ( 2009; ). The complete genome of klassevirus – a novel picornavirus in pediatric stool. Virol J 6, 82.[CrossRef]
    [Google Scholar]
  16. Hales, L. M., Knowles, N. J., Reddy, P. S., Xu, L., Hay, C. & Hallenbeck, P. L. ( 2008; ). Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus. J Gen Virol 89, 1265–1275.[CrossRef]
    [Google Scholar]
  17. Hammerle, T., Molla, A. & Wimmer, E. ( 1992; ). Mutational analysis of the proposed FG loop of poliovirus proteinase 3C identifies amino acids that are necessary for 3CD cleavage and might be determinants of a function distinct from proteolytic activity. J Virol 66, 6028–6034.
    [Google Scholar]
  18. Hellen, C. U. & de Breyne, S. ( 2007; ). A distinct group of hepacivirus/pestivirus-like internal ribosomal entry sites in members of diverse picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination. J Virol 81, 5850–5863.[CrossRef]
    [Google Scholar]
  19. Hollister, J. R., Vagnozzi, A., Knowles, N. J. & Rieder, E. ( 2008; ). Molecular and phylogenetic analyses of bovine rhinovirus type 2 shows it is closely related to foot-and-mouth disease virus. Virology 373, 411–425.[CrossRef]
    [Google Scholar]
  20. Holtz, L. R., Finkbeiner, S. R., Kirkwood, C. D. & Wang, D. ( 2008; ). Identification of a novel picornavirus related to cosaviruses in a child with acute diarrhea. Virol J 5, 159.[CrossRef]
    [Google Scholar]
  21. Holtz, L. R., Finkbeiner, S. R., Zhao, G., Kirkwood, C. D., Girones, R., Pipas, J. M. & Wang, D. ( 2009; ). Klassevirus 1, a previously undescribed member of the family Picornaviridae, is globally widespread. Virol J 6, 86.[CrossRef]
    [Google Scholar]
  22. Hughes, P. J. & Stanway, G. ( 2000; ). The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev107 family of proteins involved in the control of cell proliferation. J Gen Virol 81, 201–207.
    [Google Scholar]
  23. Jones, M. S., Lukashov, V. V., Ganac, R. D. & Schnurr, D. P. ( 2007; ). Discovery of a novel human picornavirus in a stool sample from a pediatric patient presenting with fever of unknown origin. J Clin Microbiol 45, 2144–2150.[CrossRef]
    [Google Scholar]
  24. Kamer, G. & Argos, P. ( 1984; ). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res 12, 7269–7282.[CrossRef]
    [Google Scholar]
  25. Kapoor, A., Victoria, J., Simmonds, P., Slikas, E., Chieochansin, T., Naeem, A., Shaukat, S., Sharif, S., Alam, M. M. & other authors ( 2008a; ). A highly prevalent and genetically diversified Picornaviridae genus in South Asian children. Proc Natl Acad Sci U S A 105, 20482–20487.[CrossRef]
    [Google Scholar]
  26. Kapoor, A., Victoria, J., Simmonds, P., Wang, C., Shafer, R. W., Nims, R., Nielsen, O. & Delwart, E. ( 2008b; ). A highly divergent picornavirus in a marine mammal. J Virol 82, 311–320.[CrossRef]
    [Google Scholar]
  27. Khetsuriani, N., Lamonte-Fowlkes, A., Oberst, S. & Pallansch, M. A. ( 2006; ). Enterovirus surveillance–United States, 1970–2005. MMWR Surveill Summ 55, 1–20.
    [Google Scholar]
  28. Kim, M. C., Kwon, Y. K., Joh, S. J., Kwon, J. H., Kim, J. H. & Kim, S. J. ( 2007; ). Development of one-step reverse-transcriptase polymerase chain reaction to detect duck hepatitis virus type 1. Avian Dis 51, 540–545.[CrossRef]
    [Google Scholar]
  29. Kozak, M. ( 1986; ). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292.[CrossRef]
    [Google Scholar]
  30. Krumbholz, A., Dauber, M., Henke, A., Birch-Hirschfeld, E., Knowles, N. J., Stelzner, A. & Zell, R. ( 2002; ). Sequencing of porcine enterovirus groups II and III reveals unique features of both virus groups. J Virol 76, 5813–5821.[CrossRef]
    [Google Scholar]
  31. Kumar, S., Nei, M., Dudley, J. & Tamura, K. ( 2008; ). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9, 299–306.[CrossRef]
    [Google Scholar]
  32. Lau, S. K., Woo, P. C., Li, K. S., Huang, Y., Tsoi, H. W., Wong, B. H., Wong, S. S., Leung, S. Y., Chan, K. H. & Yuen, K. Y. ( 2005; ). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102, 14040–14045.[CrossRef]
    [Google Scholar]
  33. Lau, S. K., Woo, P. C., Li, K. S., Huang, Y., Wang, M., Lam, C. S., Xu, H., Guo, R., Chan, K. H. & other authors ( 2007a; ). Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology 367, 428–439.[CrossRef]
    [Google Scholar]
  34. Lau, S. K., Yip, C. C., Tsoi, H. W., Lee, R. A., So, L. Y., Lau, Y. L., Chan, K. H., Woo, P. C. & Yuen, K. Y. ( 2007b; ). Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J Clin Microbiol 45, 3655–3664.[CrossRef]
    [Google Scholar]
  35. Lau, S. K., Yip, C. C., Lin, A. W., Lee, R. A., So, L. Y., Lau, Y. L., Chan, K. H., Woo, P. C. & Yuen, K. Y. ( 2009; ). Clinical and molecular epidemiology of human rhinovirus C in children and adults in Hong Kong reveals a possible distinct human rhinovirus C subgroup. J Infect Dis 200, 1096–1103.[CrossRef]
    [Google Scholar]
  36. Li, L., Victoria, J., Kapoor, A., Blinkova, O., Wang, C., Babrzadeh, F., Mason, C. J., Pandey, P., Triki, H. & other authors ( 2009; ). A novel picornavirus associated with gastroenteritis. J Virol 83, 12002–12006.[CrossRef]
    [Google Scholar]
  37. Lindberg, A. M. & Johansson, S. ( 2002; ). Phylogenetic analysis of Ljungan virus and A-2 plaque virus, new members of the Picornaviridae. Virus Res 85, 61–70.[CrossRef]
    [Google Scholar]
  38. Monto, A. S. ( 2002; ). The seasonality of rhinovirus infections and its implications for clinical recognition. Clin Ther 24, 1987–1997.[CrossRef]
    [Google Scholar]
  39. Mounts, A. W., Kwong, H., Izurieta, H. S., Ho, Y., Au, T., Lee, M., Buxton Bridges, C., Williams, S. W., Mak, K. H. & other authors ( 1999; ). Case–control study of risk factors for avian influenza A (H5N1) disease, Hong Kong, 1997. J Infect Dis 180, 505–508.[CrossRef]
    [Google Scholar]
  40. Oberste, M. S., Maher, K. & Pallansch, M. A. ( 2003; ). Genomic evidence that simian virus 2 and six other simian picornaviruses represent a new genus in Picornaviridae. Virology 314, 283–293.[CrossRef]
    [Google Scholar]
  41. Oberste, M. S., Maher, K., Nix, W. A., Michele, S. M., Uddin, M., Schnurr, D., al-Busaidy, S., Akoua-Koffi, C. & Pallansch, M. A. ( 2007a; ). Molecular identification of 13 new enterovirus types, EV79–88, EV97, and EV100–101, members of the species human enterovirus B. Virus Res 128, 34–42.[CrossRef]
    [Google Scholar]
  42. Oberste, M. S., Maher, K. & Pallansch, M. A. ( 2007b; ). Complete genome sequences for nine simian enteroviruses. J Gen Virol 88, 3360–3372.[CrossRef]
    [Google Scholar]
  43. Pallansch, M. & Roos, R. ( 2007; ). Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology, 5th edn, vol. I, pp. 839–893. Edited by Knipe, D. M. & Howley, P. M.. Philadelphia, PA. : Lippincott Williams & Wilkins.
    [Google Scholar]
  44. Pelletier, J. & Sonenberg, N. ( 1988; ). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325.[CrossRef]
    [Google Scholar]
  45. Racaniello, V. R. ( 2007; ). Picornaviridae: the viruses and their replication. In Fields Virology, 5th edn, pp. 796–797. Edited by Knipe, D. M., Howley, P. M., Griffin, D. E., Lamb, R. A., Martin, M. A., Roizman, B. & Straus, S. E.. Philadelphia, PA. : Lippincott Williams & Wilkins.
    [Google Scholar]
  46. Racaniello, V. R. & Baltimore, D. ( 1981; ). Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc Natl Acad Sci U S A 78, 4887–4891.[CrossRef]
    [Google Scholar]
  47. Reuter, G., Boldizsar, A. & Pankovics, P. ( 2009; ). Complete nucleotide and amino acid sequences and genetic organization of porcine kobuvirus, a member of a new species in the genus Kobuvirus, family Picornaviridae. Arch Virol 154, 101–108.[CrossRef]
    [Google Scholar]
  48. Rice, P., Longden, I. & Bleasby, A. ( 2000; ). emboss: the European Molecular Biology Open Software Suite. Trends Genet 16, 276–277.[CrossRef]
    [Google Scholar]
  49. Roberts, P. J. & Belsham, G. J. ( 1995; ). Identification of critical amino acids within the foot-and-mouth disease virus leader protein, a cysteine protease. Virology 213, 140–146.[CrossRef]
    [Google Scholar]
  50. Ryan, M. D. & Flint, M. ( 1997; ). Virus-encoded proteinases of the picornavirus super-group. J Gen Virol 78, 699–723.
    [Google Scholar]
  51. Sasaki, J., Nagashima, S. & Taniguchi, K. ( 2003; ). Aichi virus leader protein is involved in viral RNA replication and encapsidation. J Virol 77, 10799–10807.[CrossRef]
    [Google Scholar]
  52. Taylor, L. H., Latham, S. M. & Woolhouse, M. E. ( 2001; ). Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356, 983–989.[CrossRef]
    [Google Scholar]
  53. Tracy, S., Chapman, N. M., Drescher, K. M., Kono, K. & Tapprich, W. ( 2006; ). Evolution of virulence in picornaviruses. Curr Top Microbiol Immunol 299, 193–209.
    [Google Scholar]
  54. Tseng, C. H., Knowles, N. J. & Tsai, H. J. ( 2007; ). Molecular analysis of duck hepatitis virus type 1 indicates that it should be assigned to a new genus. Virus Res 123, 190–203.[CrossRef]
    [Google Scholar]
  55. Woo, P. C., Lau, S. K., Chu, C. M., Chan, K. H., Tsoi, H. W., Huang, Y., Wong, B. H., Poon, R. W., Cai, J. J. & other authors ( 2005; ). Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79, 884–895.[CrossRef]
    [Google Scholar]
  56. Woo, P. C., Lau, S. K., Yip, C. C., Huang, Y., Tsoi, H. W., Chan, K. H. & Yuen, K. Y. ( 2006a; ). Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1. J Virol 80, 7136–7145.[CrossRef]
    [Google Scholar]
  57. Woo, P. C., Lau, S. K. & Yuen, K. Y. ( 2006b; ). Infectious diseases emerging from Chinese wet-markets: zoonotic origins of severe respiratory viral infections. Curr Opin Infect Dis 19, 401–407.[CrossRef]
    [Google Scholar]
  58. Woo, P. C., Wang, M., Lau, S. K., Xu, H., Poon, R. W., Guo, R., Wong, B. H., Gao, K., Tsoi, H. W. & other authors ( 2007a; ). Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J Virol 81, 1574–1585.[CrossRef]
    [Google Scholar]
  59. Woo, P. C., Wong, B. H., Huang, Y., Lau, S. K. & Yuen, K. Y. ( 2007b; ). Cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape codon usage bias in coronaviruses. Virology 369, 431–442.[CrossRef]
    [Google Scholar]
  60. Woo, P. C., Lau, S. K., Lam, C. S., Lai, K. K., Huang, Y., Lee, P., Luk, G. S., Dyrting, K. C., Chan, K. H. & Yuen, K. Y. ( 2009; ). Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. J Virol 83, 908–917.[CrossRef]
    [Google Scholar]
  61. Yamashita, T., Sakae, K., Tsuzuki, H., Suzuki, Y., Ishikawa, N., Takeda, N., Miyamura, T. & Yamazaki, S. ( 1998; ). Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans. J Virol 72, 8408–8412.
    [Google Scholar]
  62. Yamashita, T., Ito, M., Kabashima, Y., Tsuzuki, H., Fujiura, A. & Sakae, K. ( 2003; ). Isolation and characterization of a new species of kobuvirus associated with cattle. J Gen Virol 84, 3069–3077.[CrossRef]
    [Google Scholar]
  63. Yuen, K. Y., Chan, P. K., Peiris, M., Tsang, D. N., Que, T. L., Shortridge, K. F., Cheung, P. T., To, W. K., Ho, E. T. & other authors ( 1998; ). Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351, 467–471.[CrossRef]
    [Google Scholar]
  64. Zuker, M. ( 2003; ). mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.021717-0
Loading
/content/journal/jgv/10.1099/vir.0.021717-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2433–2448

Predicted location of polyprotein cleavage sites and expected lengths of resulting proteins.

. Phylogenetic analyses of nucleotide sequences of VP1 and 3D of the 14 novel picornavirus strains identified from dead wild birds in the present study.

Bird species screened in the present surveillance study.

Pairwise amino acid sequence identities between TV1, TV2, TV3 and other picornavirus genera in the P1, P2 and P3 regions.

Estimation of non-synonymous substitution and synonymous rates in the genomes of TV1, TV2 and TV3.

[ Single PDF file] (220 kB)

 

 



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error