%0 Journal Article %A Cuellar, J. L. %A Meinhoevel, F. %A Hoehne, M. %A Donath, E. %T Size and mechanical stability of norovirus capsids depend on pH: a nanoindentation study %D 2010 %J Journal of General Virology, %V 91 %N 10 %P 2449-2456 %@ 1465-2099 %R https://doi.org/10.1099/vir.0.021212-0 %I Microbiology Society, %X Norovirus-like particles were imaged using atomic force microscopy. The mechanical stability of the virus-like particles (VLPs) was probed by nanoindentation at pH values ranging from 2 to10. This range includes pH values of the natural environment during the life cycle of noroviruses. The resistance of VLPs to indentation was constant at acidic and neutral pH. The Young's modulus was of the order of 30 MPa. At basic pH the compliance of the capsid increased along with an increase in diameter. This specific pH-dependent mechanical response of the capsid may be related to mechanisms controlling uptake and release of the RNA during infection. Consecutive indentations with pressures ≤300 bar demonstrated the ability of the capsids to fully recover from deformations comparable with the size of the capsid. The capsids can be viewed as nanocontainers with an inbuilt self-repair mechanism. At pH 10 the capsids lost their stability and were irreversibly destroyed after one single indentation. %U https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.021212-0