Norovirus-like particles were imaged using atomic force microscopy. The mechanical stability of the virus-like particles (VLPs) was probed by nanoindentation at pH values ranging from 2 to10. This range includes pH values of the natural environment during the life cycle of noroviruses. The resistance of VLPs to indentation was constant at acidic and neutral pH. The Young's modulus was of the order of 30 MPa. At basic pH the compliance of the capsid increased along with an increase in diameter. This specific pH-dependent mechanical response of the capsid may be related to mechanisms controlling uptake and release of the RNA during infection. Consecutive indentations with pressures ≤300 bar demonstrated the ability of the capsids to fully recover from deformations comparable with the size of the capsid. The capsids can be viewed as nanocontainers with an inbuilt self-repair mechanism. At pH 10 the capsids lost their stability and were irreversibly destroyed after one single indentation.


Article metrics loading...

Loading full text...

Full text loading...



  1. Arkhipov, A., Roos, W. H., Wuite, G. J. L. & Schulten, K.(2009). Elucidating the mechanism behind irreversible deformation of viral capsids. Biophys J 97, 2061–2069.[CrossRef] [Google Scholar]
  2. Ausar, S. F., Foubert, T. R., Hudson, M. H., Vedvick, T. S. & Middaugh, C. R.(2006). Conformational stability and disassembly of Norwalk virus-like particles. Effect of pH and temperature. J Biol Chem 281, 19478–19488.[CrossRef] [Google Scholar]
  3. Bancroft, J. B., Hills, G. J. & Markham, R.(1967). A study of self-assembly process in a small spherical virus. Formation of organized structures from protein subunits in vitro. Virology 31, 354.[CrossRef] [Google Scholar]
  4. Bertolotti-Ciarlet, A., White, L. J., Chen, R., Prasad, B. V. V. & Estes, M. K.(2002). Structural requirements for the assembly of Norwalk virus-like particles. J Virol 76, 4044–4055.[CrossRef] [Google Scholar]
  5. Bertolotti-Ciarlet, A., Crawford, S. E., Hutson, A. M. & Estes, M. K.(2003). The 3′ end of Norwalk virus mRNA contains determinants that regulate the expression and stability of the viral capsid protein VP1: a novel function for the VP2 protein. J Virol 77, 11603–11615.[CrossRef] [Google Scholar]
  6. Carrasco, C., Carreira, A., Schaap, I. A. T., Serena, P. A., Gomez-Herrero, J., Mateu, M. G. & Pablo, P. J.(2006). DNA-mediated anisotropic mechanical reinforcement of a virus. Proc Natl Acad Sci U S A 103, 13706–13711.[CrossRef] [Google Scholar]
  7. Carrasco, C., Castellanos, M., de Pablo, P. J. & Mateu, M. G.(2008). Manipulation of the mechanical properties of a virus by protein engineering. Proc Natl Acad Sci U S A 105, 4150–4155.[CrossRef] [Google Scholar]
  8. Chakravarty, S., Hutson, A. M., Estes, M. K. & Prasad, B. V. V.(2005). Evolutionary trace residues in noroviruses: importance in receptor binding, antigenicity, virion assembly, and strain diversity. J Virol 79, 554–568.[CrossRef] [Google Scholar]
  9. Chen, R., Neill, J. D., Noel, J. S., Hutson, A. M., Glass, R. I., Estes, M. K. & Prasad, B. V. V.(2004). Inter- and intragenus structural variations in caliciviruses and their functional implications. J Virol 78, 6469–6479.[CrossRef] [Google Scholar]
  10. Donaldson, E. F., Lindesmith, L. C., Lobue, A. D. & Baric, R. S.(2008). Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunol Rev 225, 190–211.[CrossRef] [Google Scholar]
  11. Donath, E.(2009). Biosensors: viruses for ultrasensitive assays. Nat Nanotechnol 4, 215–216.[CrossRef] [Google Scholar]
  12. Fischlechner, M. & Donath, E.(2007). Viruses as building blocks for materials and devices. Angew Chem Int Ed Engl 46, 3184–3193.[CrossRef] [Google Scholar]
  13. Garcea, R. L. & Gissmann, L.(2004). Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr Opin Biotechnol 15, 513–517.[CrossRef] [Google Scholar]
  14. Gibbons, M. M. & Klug, W. S.(2007). Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys Rev E Stat Nonlin Soft Matter Phys 75, 031901.[CrossRef] [Google Scholar]
  15. Goodridge, L., Goodridge, C., Wu, J. Q., Griffiths, M. & Pawliszyn, J.(2004). Isoelectric point determination of norovirus virus-like particles by capillary isoelectric focusing with whole column imaging detection. Anal Chem 76, 48–52.[CrossRef] [Google Scholar]
  16. Hardy, M. E.(2005). Norovirus protein structure and function. FEMS Microbiol Lett 253, 1–8.[CrossRef] [Google Scholar]
  17. Ivanovska, I. L., de Pablo, P. J., Ibarra, B., Sgalari, G., MacKintosh, F. C., Carrascosa, J. L., Schmidt, C. F. & Wuite, G. J. L.(2004). Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci U S A 101, 7600–7605.[CrossRef] [Google Scholar]
  18. Ivanovska, I., Wuite, G., Jonsson, B. & Evilevitch, A.(2007). Internal DNA pressure modifies stability of WT phage. Proc Natl Acad Sci U S A 104, 9603–9608.[CrossRef] [Google Scholar]
  19. Jiang, X., Wang, M., Graham, D. Y. & Estes, M. K.(1992). Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 66, 6527–6532. [Google Scholar]
  20. Kasas, S. & Dietler, G.(2008). Probing nanomechanical properties from biomolecules to living cells. Pflugers Arch 456, 13–27.[CrossRef] [Google Scholar]
  21. Klug, W. S., Bruinsma, R. F., Michel, J. P., Knobler, C. M., Ivanovska, I. L., Schmidt, C. F. & Wuite, G. J. L.(2006). Failure of viral shells. Phys Rev Lett 97, 228101.[CrossRef] [Google Scholar]
  22. Kol, N., Gladnikoff, M., Barlam, D., Shneck, R. Z., Rein, A. & Rousso, I.(2006). Mechanical properties of murine leukemia virus particles: effect of maturation. Biophys J 91, 767–774.[CrossRef] [Google Scholar]
  23. Kol, N., Shi, Y., Tsvitov, M., Barlam, D., Shneck, R. Z., Kay, M. S. & Rousso, I.(2007). A stiffness switch in human immunodeficiency virus. Biophys J 92, 1777–1783.[CrossRef] [Google Scholar]
  24. Landau, L. D. & Lifshitz, E. M.(1986).Theory of Elasticity, third edn, pp 54–57. Oxford. : Pergamon Press. [Google Scholar]
  25. Lavelle, L., Gingery, M., Phillips, M., Gelbart, W. M., Knobler, C. M., Cadena-Nava, R. D., Vega-Acosta, J. R., Pinedo-Torres, L. A. & Ruiz-Garcia, J.(2009). Phase diagram of self-assembled viral capsid protein polymorphs. J Phys Chem B 113, 3813–3819.[CrossRef] [Google Scholar]
  26. Liashkovich, I., Hafezi, W., Kuhn, J. E., Oberleithner, H., Kramer, A. & Shahin, V.(2008). Exceptional mechanical and structural stability of HSV-1 unveiled with fluid atomic force microscopy. J Cell Sci 121, 2287–2292.[CrossRef] [Google Scholar]
  27. Lidmar, J., Mirny, L. & Nelson, D. R.(2003). Virus shapes and buckling transitions in spherical shells. Phys Rev E Stat Nonlin Soft Matter Phys 68, 051910.[CrossRef] [Google Scholar]
  28. Mannige, R. V. & Brooks, C. L.(2009). Geometric considerations in virus capsid size specificity, auxiliary requirements, and buckling. Proc Natl Acad Sci U S A 106, 8531–8536.[CrossRef] [Google Scholar]
  29. Michel, J. P., Ivanovska, I. L., Gibbons, M. M., Klug, W. S., Knobler, C. M., Wuite, G. J. L. & Schmidt, C. F.(2006). Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc Natl Acad Sci U S A 103, 6184–6189.[CrossRef] [Google Scholar]
  30. Mourez, T., Vabret, A., Han, Y., Dina, J., Legrand, L., Corbet, S. & Freymuth, F.(2007). Baculovirus expression of HCoV-OC43 nucleocapsid protein and development of a Western blot assay for detection of human antibodies against HCoV-OC43. J Virol Methods 139, 175–180.[CrossRef] [Google Scholar]
  31. Pattenden, L. K., Middelberg, A. P. J., Niebert, M. & Lipin, D. I.(2005). Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol 23, 523–529.[CrossRef] [Google Scholar]
  32. Prasad, B. V. V., Matson, D. O. & Smith, A. W.(1994a). Three-dimensional structure of calicivirus. J Mol Biol 240, 256–264.[CrossRef] [Google Scholar]
  33. Prasad, B. V. V., Rothnagel, R., Jiang, X. & Estes, M. K.(1994b). Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J Virol 68, 5117–5125. [Google Scholar]
  34. Prasad, B. V. V., Hardy, M. E., Dokland, T., Bella, J., Rossmann, M. G. & Estes, M. K.(1999). X-ray crystallographic structure of the Norwalk virus capsid. Science 286, 287–290.[CrossRef] [Google Scholar]
  35. Roos, W. H. & Wuite, G. L.(2009). Nanoindentation studies reveal material properties of viruses. Adv Mater 21, 1187–1192.[CrossRef] [Google Scholar]
  36. Roos, W. H., Ivanovska, I. L., Evilevitch, A. & Wuite, G. J. L.(2007). Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell Mol Life Sci 64, 1484–1497.[CrossRef] [Google Scholar]
  37. Sader, J. E., Chon, J. W. M. & Mulvaney, P.(1999). Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70, 3967–3969.[CrossRef] [Google Scholar]
  38. Singh, P., Gonzalez, M. J. & Manchester, M.(2006). Viruses and their uses in nanotechnology. Drug Dev Res 67, 23–41.[CrossRef] [Google Scholar]
  39. Tan, M., Hegde, R. S. & Jiang, X.(2004). The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors. J Virol 78, 6233–6242.[CrossRef] [Google Scholar]
  40. Taube, S., Kurth, A. & Schreier, E.(2005). Generation of recombinant Norovirus-like particles (VLP) in the human endothelial kidney cell line 293T. Arch Virol 150, 1425–1431.[CrossRef] [Google Scholar]
  41. White, L. J., Ball, J. M., Hardy, M. E., Tanaka, T. N., Kitamoto, N. & Estes, M. K.(1996). Attachment and entry of recombinant Norwalk virus capsids to cultured human and animal cell lines. J Virol 70, 6589–6597. [Google Scholar]
  42. White, L. J., Hardy, M. E. & Estes, H. K.(1997). Biochemical characterization of a smaller form of recombinant Norwalk virus capsids assembled in insect cells. J Virol 71, 8066–8072. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error