1887

Abstract

Hantaviruses belong to the family characterized by tri-segmented RNA genomes. Depending on the hantavirus species, infection can lead to hantavirus cardiopulmonary or haemorrhagic fever with renal syndrome. studies suggest that pathogenic hantaviruses evade induction of innate antiviral responses, and this ability might determine the virulence in humans. Since reverse genetic systems are not available, reassortment is currently the only way to culture defined hantavirus variants. Here, we demonstrate for the first time the generation of a reassortant between a pathogenic Old World and a non-pathogenic New World hantavirus . The reassortant contained the glycoprotein coding M-segment derived from the pathogenic Puumala virus (PUUV) and the other genomic segments coding for the nucleocapsid protein and RNA-dependent RNA-polymerase from Prospect Hill virus (PHV), which is taken as non-pathogenic in humans. Exchange of the M-segment was confirmed by sequencing and virus neutralization test with PUUV-specific sera. Functional analysis of the reassortant and parental viruses revealed characteristic growth kinetics and innate immune responses as determined by expression analyses for lambda interferon and MxA, and by interferon-stimulated response element reporter gene studies. Consistent with previous studies with other pathogenic hantaviruses, PUUV elicited reduced innate responses if compared with PHV. In all these functional assays the reassortant revealed PHV-like phenotypes. Thus, neither the PUUV M-segment nor entry via specific M-segment directed pathways modulated the virus type-specific innate responses. Moreover, the data imply that this approach might be an option for production of attenuated viruses that could be used as vaccines against pathogenic hantaviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.021139-0
2010-09-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/9/2351.html?itemId=/content/journal/jgv/10.1099/vir.0.021139-0&mimeType=html&fmt=ahah

References

  1. Alff, P. J., Gavrilovskaya, I. N., Gorbunova, E., Endriss, K., Chong, Y., Geimonen, E., Sen, N., Reich, N. C. & Mackow, E. R. ( 2006; ). The pathogenic NY-1 hantavirus G1 cytoplasmic tail inhibits RIG-I- and TBK-1-directed interferon responses. J Virol 80, 9676–9686.[CrossRef]
    [Google Scholar]
  2. Alff, P. J., Sen, N., Gorbunova, E., Gavrilovskaya, I. N. & Mackow, E. R. ( 2008; ). The NY-1 hantavirus Gn cytoplasmic tail coprecipitates TRAF3 and inhibits cellular interferon responses by disrupting TBK1-TRAF3 complex formation. J Virol 82, 9115–9122.[CrossRef]
    [Google Scholar]
  3. Cho, H. W. & Howard, C. R. ( 1999; ). Antibody responses in humans to an inactivated hantavirus vaccine (Hantavax). Vaccine 17, 2569–2575.[CrossRef]
    [Google Scholar]
  4. Cho, H. W., Howard, C. R. & Lee, H. W. ( 2002; ). Review of an inactivated vaccine against hantaviruses. Intervirology 45, 328–333.[CrossRef]
    [Google Scholar]
  5. Chu, Y. K., Jennings, G., Schmaljohn, A., Elgh, F., Hjelle, B., Lee, H. W., Jenison, S., Ksiazek, T., Peters, C. J. & other authors ( 1995; ). Cross-neutralization of hantaviruses with immune sera from experimentally infected animals and from hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome patients. J Infect Dis 172, 1581–1584.[CrossRef]
    [Google Scholar]
  6. Diaz, M. O., Ziemin, S., Le Beau, M. M., Pitha, P., Smith, S. D., Chilcote, R. R. & Rowley, J. D. ( 1988; ). Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines. Proc Natl Acad Sci U S A 85, 5259–5263.[CrossRef]
    [Google Scholar]
  7. Elliott, R. M., Schmaljohn, C. S. & Collett, M. S. ( 1991; ). Bunyaviridae genome structure and gene expression. Curr Top Microbiol Immunol 169, 91–141.
    [Google Scholar]
  8. Fauquet, C. M. & Mayo, M. A., Manilof, F. J., Desselberger, U. & Ball, L. A. (editors) ( 2005; ). Bunyaviridae. In Virus Taxonomy. Classification and Nomenclature of Viruses. Eighth Report of the Committee on the Taxonomy of Viruses. Amsterdam: Academic Press.
  9. Gavrilovskaya, I. N., Shepley, M., Shaw, R., Ginsberg, M. H. & Mackow, E. R. ( 1998; ). β 3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci U S A 95, 7074–7079.[CrossRef]
    [Google Scholar]
  10. Geimonen, E., Neff, S., Raymond, T., Kocer, S. S., Gavrilovskaya, I. N. & Mackow, E. R. ( 2002; ). Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses. Proc Natl Acad Sci U S A 99, 13837–13842.[CrossRef]
    [Google Scholar]
  11. Handke, W., Krüger, D. H. & Rang, A. ( 2009a; ). Defective particles can lead to underestimated antibody titers in virus neutralization tests. Intervirology 52, 335–339.[CrossRef]
    [Google Scholar]
  12. Handke, W., Oelschlegel, R., Franke, R., Kruger, D. H. & Rang, A. ( 2009b; ). Hantaan virus triggers TLR3-dependent innate immune responses. J Immunol 182, 2849–2858.[CrossRef]
    [Google Scholar]
  13. Heider, H., Ziaja, B., Priemer, C., Lundkvist, A., Neyts, J., Krüger, D. H. & Ulrich, R. ( 2001; ). A chemiluminescence detection method of hantaviral antigens in neutralisation assays and inhibitor studies. J Virol Methods 96, 17–23.[CrossRef]
    [Google Scholar]
  14. Henderson, W. W., Monroe, M. C., St Jeor, S. C., Thayer, W. P., Rowe, J. E., Peters, C. J. & Nichol, S. T. ( 1995; ). Naturally occurring Sin Nombre virus genetic reassortants. Virology 214, 602–610.[CrossRef]
    [Google Scholar]
  15. Hooper, J. W., Larsen, T., Custer, D. M. & Schmaljohn, C. S. ( 2001; ). A lethal disease model for hantavirus pulmonary syndrome. Virology 289, 6–14.[CrossRef]
    [Google Scholar]
  16. Jääskeläinen, K. M., Kaukinen, P., Minskaya, E. S., Plyusnina, A., Vapalahti, O., Elliott, R. M., Weber, F., Vaheri, A. & Plyusnin, A. ( 2007; ). Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter. J Med Virol 79, 1527–1536.[CrossRef]
    [Google Scholar]
  17. Khaiboullina, S. F., Rizvanov, A. A., Otteson, E., Miyazato, A., Maciejewski, J. & St Jeor, S. ( 2004; ). Regulation of cellular gene expression in endothelial cells by Sin Nombre and Prospect Hill viruses. Viral Immunol 17, 234–251.[CrossRef]
    [Google Scholar]
  18. Klempa, B., Schmidt, H. A., Ulrich, R., Kaluz, S., Labuda, M., Meisel, H., Hjelle, B. & Krüger, D. H. ( 2003; ). Genetic interaction between distinct Dobrava hantavirus subtypes in Apodemus agrarius and A. flavicollis in nature. J Virol 77, 804–809.[CrossRef]
    [Google Scholar]
  19. Klingström, J., Stoltz, M., Hardestam, J., Ahlm, C. & Lundkvist, A. ( 2008; ). Passive immunization protects cynomolgus macaques against Puumala hantavirus challenge. Antivir Ther 13, 125–133.
    [Google Scholar]
  20. Kraus, A. A., Raftery, M. J., Giese, T., Ulrich, R., Zawatzky, R., Hippenstiel, S., Suttorp, N., Krüger, D. H. & Schönrich, G. ( 2004; ). Differential antiviral response of endothelial cells after infection with pathogenic and nonpathogenic hantaviruses. J Virol 78, 6143–6150.[CrossRef]
    [Google Scholar]
  21. Krüger, D. H., Ulrich, R. & Lundkvist, A. A. ( 2001; ). Hantavirus infections and their prevention. Microbes Infect 3, 1129–1144.[CrossRef]
    [Google Scholar]
  22. Lee, P. W., Gibbs, C. J., Jr, Gajdusek, D. C. & Yanagihara, R. ( 1985; ). Serotypic classification of hantaviruses by indirect immunofluorescent antibody and plaque reduction neutralization tests. J Clin Microbiol 22, 940–944.
    [Google Scholar]
  23. Li, D., Schmaljohn, A. L., Anderson, K. & Schmaljohn, C. S. ( 1995; ). Complete nucleotide sequences of the M and S segments of two hantavirus isolates from California: evidence for reassortment in nature among viruses related to hantavirus pulmonary syndrome. Virology 206, 973–983.[CrossRef]
    [Google Scholar]
  24. Lundkvist, A., Fatouros, A. & Niklasson, B. ( 1991; ). Antigenic variation of European haemorrhagic fever with renal syndrome virus strains characterized using bank vole monoclonal antibodies. J Gen Virol 72, 2097–2103.[CrossRef]
    [Google Scholar]
  25. Mackow, E. R. & Gavrilovskaya, I. N. ( 2001; ). Cellular receptors and hantavirus pathogenesis. Curr Top Microbiol Immunol 256, 91–115.
    [Google Scholar]
  26. McElroy, A. K., Smith, J. M., Hooper, J. W. & Schmaljohn, C. S. ( 2004; ). Andes virus M genome segment is not sufficient to confer the virulence associated with Andes virus in Syrian hamsters. Virology 326, 130–139.[CrossRef]
    [Google Scholar]
  27. Rang, A., Heider, H., Ulrich, R. & Krüger, D. H. ( 2006; ). A novel method for cloning of non-cytolytic viruses. J Virol Methods 135, 26–31.[CrossRef]
    [Google Scholar]
  28. Razzauti, M., Plyusnina, A., Sironen, T., Henttonen, H. & Plyusnin, A. ( 2009; ). Analysis of Puumala hantavirus in a bank vole population in northern Finland: evidence for co-circulation of two genetic lineages and frequent reassortment between strains. J Gen Virol 90, 1923–1931.[CrossRef]
    [Google Scholar]
  29. Rizvanov, A. A., Khaiboullina, S. F. & St Jeor, S. ( 2004; ). Development of reassortant viruses between pathogenic hantavirus strains. Virology 327, 225–232.[CrossRef]
    [Google Scholar]
  30. Rodriguez, L. L., Owens, J. H., Peters, C. J. & Nichol, S. T. ( 1998; ). Genetic reassortment among viruses causing hantavirus pulmonary syndrome. Virology 242, 99–106.[CrossRef]
    [Google Scholar]
  31. Schmaljohn, C. ( 2009; ). Vaccines for hantaviruses. Vaccine 27, D61–D64.[CrossRef]
    [Google Scholar]
  32. Schmaljohn, C. & Hjelle, B. ( 1997; ). Hantaviruses: a global disease problem. Emerg Infect Dis 3, 95–104.[CrossRef]
    [Google Scholar]
  33. Schönrich, G., Rang, A., Lutteke, N., Raftery, M. J., Charbonnel, N. & Ulrich, R. G. ( 2008; ). Hantavirus-induced immunity in rodent reservoirs and humans. Immunol Rev 225, 163–189.[CrossRef]
    [Google Scholar]
  34. Sohn, Y. M., Rho, H. O., Park, M. S., Kim, J. S. & Summers, P. L. ( 2001; ). Primary humoral immune responses to formalin inactivated hemorrhagic fever with renal syndrome vaccine (Hantavax): consideration of active immunization in South Korea. Yonsei Med J 42, 278–284.[CrossRef]
    [Google Scholar]
  35. Spiropoulou, C. F., Albarino, C. G., Ksiazek, T. G. & Rollin, P. E. ( 2007; ). Andes and Prospect Hill hantaviruses differ in early induction of interferon although both can downregulate interferon signaling. J Virol 81, 2769–2776.[CrossRef]
    [Google Scholar]
  36. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  37. Tanaka, N., Kawakami, T. & Taniguchi, T. ( 1993; ). Recognition DNA sequences of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. Mol Cell Biol 13, 4531–4538.
    [Google Scholar]
  38. Ulrich, R., Hjelle, B., Pitra, C. & Krüger, D. H. ( 2002; ). Emerging viruses: the case ‘hantavirus’. Intervirology 45, 318–327.[CrossRef]
    [Google Scholar]
  39. Yanagihara, R., Daum, C. A., Lee, P. W., Baek, L. J., Amyx, H. L., Gajdusek, D. C. & Gibbs, C. J., Jr ( 1987; ). Serological survey of Prospect Hill virus infection in indigenous wild rodents in the USA. Trans R Soc Trop Med Hyg 81, 42–45.[CrossRef]
    [Google Scholar]
  40. Zou, Y., Hu, J., Wang, Z. X., Wang, D. M., Yu, C., Zhou, J. Z., Fu, Z. F. & Zhang, Y. Z. ( 2008; ). Genetic characterization of hantaviruses isolated from Guizhou, China: evidence for spillover and reassortment in nature. J Med Virol 80, 1033–1041.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.021139-0
Loading
/content/journal/jgv/10.1099/vir.0.021139-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2351 - 2359

Primers used for genotyping, sequencing and quantitative PCR analysis [PDF](83 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error