Here we characterize the interaction between the glycoproteins (Gn and Gc) and the ribonucleoprotein (RNP) of Puumala virus (PUUV; genus , family ). The interaction was initially established with native proteins by co-immunoprecipitating PUUV nucleocapsid (N) protein with the glycoprotein complex. Mapping of the interaction sites revealed that the N protein has multiple binding sites in the cytoplasmic tail (CT) of Gn and is also able to bind to the predicted CT of Gc. The importance of Gn- and Gc-CTs to the recognition of RNP was further verified in pull-down assays using soluble peptides with binding capacity to both recombinant N protein and the RNPs of PUUV and Tula virus. Additionally, the N protein of PUUV was demonstrated to interact with peptides of Gn and Gc from a variety of hantavirus species, suggesting a conserved RNP-recognition mechanism within the genus. Based on these and our previous results, we suggest that the complete hetero-oligomeric (Gn–Gc) spike complex of hantaviruses mediates the packaging of RNP into virions.


Article metrics loading...

Loading full text...

Full text loading...



  1. Alminaite, A., Backstrom, V., Vaheri, A. & Plyusnin, A.(2008). Oligomerization of hantaviral nucleocapsid protein: charged residues in the N-terminal coiled-coil domain contribute to intermolecular interactions. J Gen Virol 89, 2167–2174.[CrossRef] [Google Scholar]
  2. Barth, B. U. & Garoff, H.(1997). The nucleocapsid-binding spike subunit E2 of Semliki Forest virus requires complex formation with the E1 subunit for activity. J Virol 71, 7857–7865. [Google Scholar]
  3. Eifan, S. A. & Elliott, R. M.(2009). Mutational analysis of the Bunyamwera orthobunyavirus nucleocapsid protein gene. J Virol 83, 11307–11317.[CrossRef] [Google Scholar]
  4. Elliott, R. M.(1997). Emerging viruses: the Bunyaviridae. Mol Med 3, 572–577. [Google Scholar]
  5. Elliott, R. M., Bouloy, M., Calisher, C. H., Goldbach, R., Moyer, J. T., Nichol, S. T., Pettersson, R., Plyusnin, A. & Schmaljohn, C.(2000). Family Bunyaviridae. In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses, pp. 599–621. Edited by M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. San Diego, CA: Academic Press.
  6. Estrada, D. F., Boudreaux, D. M., Zhong, D., St Jeor, S. C. & De Guzman, R. N.(2009). The hantavirus glycoprotein G1 tail contains dual CCHC-type classical zinc fingers. J Biol Chem 284, 8654–8660.[CrossRef] [Google Scholar]
  7. Flint, S. J., Enquist, L. W., Krug, R. M., Racaniello, V. R. & Skalka, A. M.(2000).Principles of Virology: Molecular Biology, Pathogenesis, and Control. Washington, DC: American Society for Microbiology.
  8. Frank, R.(2002). The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports – principles and applications. J Immunol Methods 267, 13–26.[CrossRef] [Google Scholar]
  9. Gott, P., Stohwasser, R., Schnitzler, P., Darai, G. & Bautz, E. K.(1993). RNA binding of recombinant nucleocapsid proteins of hantaviruses. Virology 194, 332–337.[CrossRef] [Google Scholar]
  10. He, R., Leeson, A., Ballantine, M., Andonov, A., Baker, L., Dobie, F., Li, Y., Bastien, N., Feldmann, H. & other authors(2004). Characterization of protein–protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res 105, 121–125.[CrossRef] [Google Scholar]
  11. Hepojoki, J., Strandin, T., Vaheri, A. & Lankinen, H.(2010). Interactions and oligomerization of hantavirus glycoproteins. J Virol 84, 227–242.[CrossRef] [Google Scholar]
  12. Heyman, P., Vaheri, A., Lundkvist, A. & Avsic-Zupanc, T.(2009). Hantavirus infections in Europe: from virus carriers to a major public-health problem. Expert Rev Anti Infect Ther 7, 205–217.[CrossRef] [Google Scholar]
  13. Huiskonen, J. T., Hepojoki, J., Laurinmaki, P., Vaheri, A., Lankinen, H., Butcher, S. J. & Grunewald, K.(2010). Electron cryo-tomography of Tula hantavirus suggests a unique assembly paradigm for enveloped viruses. J Virol 84, 4889–4897.[CrossRef] [Google Scholar]
  14. Kaukinen, P., Vaheri, A. & Plyusnin, A.(2005). Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. Arch Virol 150, 1693–1713.[CrossRef] [Google Scholar]
  15. Klempa, B.(2009). Hantaviruses and climate change. Clin Microbiol Infect 15, 518–523.[CrossRef] [Google Scholar]
  16. Kuismanen, E.(1984). Posttranslational processing of Uukuniemi virus glycoproteins G1 and G2. J Virol 51, 806–812. [Google Scholar]
  17. Li, X. D., Makela, T. P., Guo, D., Soliymani, R., Koistinen, V., Vapalahti, O., Vaheri, A. & Lankinen, H.(2002). Hantavirus nucleocapsid protein interacts with the Fas-mediated apoptosis enhancer Daxx. J Gen Virol 83, 759–766. [Google Scholar]
  18. Liu, L., Celma, C. C. & Roy, P.(2008). Rift Valley fever virus structural proteins: expression, characterization and assembly of recombinant proteins. Virol J 5, 82[CrossRef] [Google Scholar]
  19. Lo, S. Y., Selby, M. J. & Ou, J. H.(1996). Interaction between hepatitis C virus core protein and E1 envelope protein. J Virol 70, 5177–5182. [Google Scholar]
  20. Lundkvist, A. & Niklasson, B.(1992). Bank vole monoclonal antibodies against Puumala virus envelope glycoproteins: identification of epitopes involved in neutralization. Arch Virol 126, 93–105.[CrossRef] [Google Scholar]
  21. Lundkvist, A., Fatouros, A. & Niklasson, B.(1991). Antigenic variation of European haemorrhagic fever with renal syndrome virus strains characterized using bank vole monoclonal antibodies. J Gen Virol 72, 2097–2103.[CrossRef] [Google Scholar]
  22. Lundkvist, A., Horling, J., Athlin, L., Rosen, A. & Niklasson, B.(1993). Neutralizing human monoclonal antibodies against Puumala virus, causative agent of nephropathia epidemica: a novel method using antigen-coated magnetic beads for specific B cell isolation. J Gen Virol 74, 1303–1310.[CrossRef] [Google Scholar]
  23. Martin, M. L., Lindsey-Regnery, H., Sasso, D. R., McCormick, J. B. & Palmer, E.(1985). Distinction between Bunyaviridae genera by surface structure and comparison with Hantaan virus using negative stain electron microscopy. Arch Virol 86, 17–28.[CrossRef] [Google Scholar]
  24. Mertz, G. J., Hjelle, B., Crowley, M., Iwamoto, G., Tomicic, V. & Vial, P. A.(2006). Diagnosis and treatment of new world hantavirus infections. Curr Opin Infect Dis 19, 437–442.[CrossRef] [Google Scholar]
  25. Metsikko, K. & Garoff, H.(1990). Oligomers of the cytoplasmic domain of the p62/E2 membrane protein of Semliki Forest virus bind to the nucleocapsid in vitro. J Virol 64, 4678–4683. [Google Scholar]
  26. Nakai, K., Okamoto, T., Kimura-Someya, T., Ishii, K., Lim, C. K., Tani, H., Matsuo, E., Abe, T., Mori, Y. & other authors(2006). Oligomerization of hepatitis C virus core protein is crucial for interaction with the cytoplasmic domain of E1 envelope protein. J Virol 80, 11265–11273.[CrossRef] [Google Scholar]
  27. Narayanan, K., Maeda, A., Maeda, J. & Makino, S.(2000). Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol 74, 8127–8134.[CrossRef] [Google Scholar]
  28. Nichol, S. T., Beaty, B. J., Elliott, R. M., Goldbach, R., Plyusnin, A., Schmaljohn, C. S. & Tesh, R. B.(2005). Family Bunyaviridae. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, pp. 695–716. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. San Diego, CA: Elsevier Academic Press.
  29. Overby, A. K., Pettersson, R. F. & Neve, E. P.(2007a). The glycoprotein cytoplasmic tail of Uukuniemi virus (Bunyaviridae) interacts with ribonucleoproteins and is critical for genome packaging. J Virol 81, 3198–3205.[CrossRef] [Google Scholar]
  30. Overby, A. K., Popov, V. L., Pettersson, R. F. & Neve, E. P.(2007b). The cytoplasmic tails of Uukuniemi virus (Bunyaviridae) GN and GC glycoproteins are important for intracellular targeting and the budding of virus-like particles. J Virol 81, 11381–11391.[CrossRef] [Google Scholar]
  31. Pensiero, M. N. & Hay, J.(1992). The Hantaan virus M-segment glycoproteins G1 and G2 can be expressed independently. J Virol 66, 1907–1914. [Google Scholar]
  32. Persson, R. & Pettersson, R. F.(1991). Formation and intracellular transport of a heterodimeric viral spike protein complex. J Cell Biol 112, 257–266.[CrossRef] [Google Scholar]
  33. Pini, N.(2004). Hantavirus pulmonary syndrome in Latin America. Curr Opin Infect Dis 17, 427–431.[CrossRef] [Google Scholar]
  34. Plyusnin, A. & Morzunov, S. P.(2001). Virus evolution and genetic diversity of hantaviruses and their rodent hosts. Curr Top Microbiol Immunol 256, 47–75. [Google Scholar]
  35. Plyusnin, A., Vapalahti, O. & Vaheri, A.(1996). Hantaviruses: genome structure, expression and evolution. J Gen Virol 77, 2677–2687.[CrossRef] [Google Scholar]
  36. Plyusnin, A., Kukkonen, S. K., Plyusnina, A., Vapalahti, O. & Vaheri, A.(2002). Transfection-mediated generation of functionally competent Tula hantavirus with recombinant S RNA segment. EMBO J 21, 1497–1503.[CrossRef] [Google Scholar]
  37. Razzauti, M., Plyusnina, A., Sironen, T., Henttonen, H. & Plyusnin, A.(2009). Analysis of Puumala hantavirus in a bank vole population in northern Finland: evidence for co-circulation of two genetic lineages and frequent reassortment between strains. J Gen Virol 90, 1923–1931.[CrossRef] [Google Scholar]
  38. Ribeiro, D., Borst, J. W., Goldbach, R. & Kormelink, R.(2009). Tomato spotted wilt virus nucleocapsid protein interacts with both viral glycoproteins Gn and Gc in planta. Virology 383, 121–130.[CrossRef] [Google Scholar]
  39. Rodriguez, L. L., Owens, J. H., Peters, C. J. & Nichol, S. T.(1998). Genetic reassortment among viruses causing hantavirus pulmonary syndrome. Virology 242, 99–106.[CrossRef] [Google Scholar]
  40. Schmaljohn, C. & Hjelle, B.(1997). Hantaviruses: a global disease problem. Emerg Infect Dis 3, 95–104.[CrossRef] [Google Scholar]
  41. Schonrich, G., Rang, A., Lutteke, N., Raftery, M. J., Charbonnel, N. & Ulrich, R. G.(2008). Hantavirus-induced immunity in rodent reservoirs and humans. Immunol Rev 225, 163–189.[CrossRef] [Google Scholar]
  42. Shi, X. & Elliott, R. M.(2002). Golgi localization of Hantaan virus glycoproteins requires coexpression of G1 and G2. Virology 300, 31–38.[CrossRef] [Google Scholar]
  43. Snippe, M., Willem Borst, J., Goldbach, R. & Kormelink, R.(2007). Tomato spotted wilt virus Gc and N proteins interact in vivo. Virology 357, 115–123.[CrossRef] [Google Scholar]
  44. Spiropoulou, C. F.(2001). Hantavirus maturation. Curr Top Microbiol Immunol 256, 33–46. [Google Scholar]
  45. Sturman, L. S., Holmes, K. V. & Behnke, J.(1980). Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J Virol 33, 449–462. [Google Scholar]
  46. Vaheri, A., Vapalahti, O. & Plyusnin, A.(2008). How to diagnose hantavirus infections and detect them in rodents and insectivores. Rev Med Virol 18, 277–288.[CrossRef] [Google Scholar]
  47. Vapalahti, O., Kallio-Kokko, H., Narvanen, A., Julkunen, I., Lundkvist, A., Plyusnin, A., Lehvaslaiho, H., Brummer-Korvenkontio, M., Vaheri, A. & Lankinen, H.(1995). Human B-cell epitopes of Puumala virus nucleocapsid protein, the major antigen in early serological response. J Med Virol 46, 293–303.[CrossRef] [Google Scholar]
  48. Vapalahti, O., Lundkvist, A., Kallio-Kokko, H., Paukku, K., Julkunen, I., Lankinen, H. & Vaheri, A.(1996). Antigenic properties and diagnostic potential of Puumala virus nucleocapsid protein expressed in insect cells. J Clin Microbiol 34, 119–125. [Google Scholar]
  49. Vapalahti, O., Mustonen, J., Lundkvist, A., Henttonen, H., Plyusnin, A. & Vaheri, A.(2003). Hantavirus infections in Europe. Lancet Infect Dis 3, 653–661.[CrossRef] [Google Scholar]
  50. Vaux, D. J., Helenius, A. & Mellman, I.(1988). Spike–nucleocapsid interaction in Semliki Forest virus reconstructed using network antibodies. Nature 336, 36–42.[CrossRef] [Google Scholar]
  51. Venien-Bryan, C. & Fuller, S. D.(1994). The organization of the spike complex of Semliki Forest virus. J Mol Biol 236, 572–583.[CrossRef] [Google Scholar]
  52. Vogel, R. H., Provencher, S. W., von Bonsdorff, C. H., Adrian, M. & Dubochet, J.(1986). Envelope structure of Semliki Forest virus reconstructed from cryo-electron micrographs. Nature 320, 533–535.[CrossRef] [Google Scholar]
  53. Wang, Y., Boudreaux, D. M., Estrada, D. F., Egan, C. W., St Jeor, S. C. & De Guzman, R. N.(2008). NMR structure of the N-terminal coiled coil domain of the Andes hantavirus nucleocapsid protein. J Biol Chem 283, 28297–28304.[CrossRef] [Google Scholar]
  54. Wang, H., Alminaite, A., Vaheri, A. & Plyusnin, A.(2010). Interaction between hantaviral nucleocapsid protein and the cytoplasmic tail of surface glycoprotein Gn. Virus Res 151, 205–212.[CrossRef] [Google Scholar]
  55. Weaver, S. C., Frey, T. K., Huang, H. V., Kinney, R. M., Rice, C. M., Roehrig, J. T., Shope, R. E. & Strauss, E. G.(2005). Family Togaviridae. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, pp. 999–1008. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. San Diego, CA: Elsevier Academic Press.

Data & Media loading...


vol. , part 9, pp. 2341–2350

(a) BacN binding to Gc-CT of PUUV. (b) RNP binding to Gc-CT of PUUV.

[ PDF] (330 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error