1887

Abstract

Because of their high susceptibility to infection with various influenza virus strains, Madin–Darby canine kidney (MDCK) cells have been widely used as a substrate for influenza virus isolation and vaccine production. However, MDCK cells are also interferon (IFN) competent, and the type I IFN response is commonly thought to be a factor strongly inhibiting virus replication. Therefore, the inhibition of influenza virus replication by IFN signalling was analysed for an adherent MDCK cell line used in vaccine manufacturing. Depending on the respective virus strain, different levels of IFN induction and a corresponding upregulation of the IFN-induced myxovirus resistance protein 1 (Mx1) were observed. Suppression of IFN induction by transient expression of the viral non-structural protein 1 protein enhanced replication of an influenza virus lacking NS1, but not wild-type strains. In agreement with this, stimulation of cells with MDCK cell-derived IFN prior to infection resulted only in a decrease in replication rate, and not in a change of final yields for wild-type influenza viruses. This lack of IFN-induced antiviral activity correlated with missing anti-influenza activity of MDCK Mx proteins. No inhibitory effect on viral polymerase activity was found for canine Mx1 (cMx1) and cMx2 in minireplicon assays. In conclusion, in MDCK cells, IFN expression is not a limiting factor for influenza virus replication and this might partially be caused by a lack of anti-influenza activity of canine Mx proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.020370-0
2010-07-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/7/1754.html?itemId=/content/journal/jgv/10.1099/vir.0.020370-0&mimeType=html&fmt=ahah

References

  1. Audsley, J. M. & Tannock, G. A. ( 2008; ). Cell-based influenza vaccines: progress to date. Drugs 68, 1483–1491.[CrossRef]
    [Google Scholar]
  2. Basler, C. F., Wang, X., Mühlberger, E., Volchkov, V., Paragas, J., Klenk, H. D., García-Sastre, A. & Palese, P. ( 2000; ). The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A 97, 12289–12294.[CrossRef]
    [Google Scholar]
  3. Benfield, C. T., Lyall, J. W., Kochs, G. & Tiley, L. S. ( 2008; ). Asparagine 631 variants of the chicken Mx protein do not inhibit influenza virus replication in primary chicken embryo fibroblasts or in vitro surrogate assays. J Virol 82, 7533–7539.[CrossRef]
    [Google Scholar]
  4. Bowie, A. G. & Unterholzner, L. ( 2008; ). Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8, 911–922.[CrossRef]
    [Google Scholar]
  5. de Vries, W., Haasnoot, J., van der Velden, J., van Montfort, T., Zorgdrager, F., Paxton, W., Cornelissen, M., van Kuppeveld, F., de Haan, P. & Berkhout, B. ( 2008; ). Increased virus replication in mammalian cells by blocking intracellular innate defense responses. Gene Ther 15, 545–552.[CrossRef]
    [Google Scholar]
  6. Di Trani, L., Bedini, B., Donatelli, I., Campitelli, L., Chiappini, B., De Marco, M. A., Delogu, M., Buonavoglia, C. & Vaccari, G. ( 2006; ). A sensitive one-step real-time PCR for detection of avian influenza viruses using a MGB probe and an internal positive control. BMC Infect Dis 6, 87 [CrossRef]
    [Google Scholar]
  7. Dittmann, J., Stertz, S., Grimm, D., Steel, J., García-Sastre, A., Haller, O. & Kochs, G. ( 2008; ). Influenza A virus strains differ in sensitivity to the antiviral action of Mx-GTPase. J Virol 82, 3624–3631.[CrossRef]
    [Google Scholar]
  8. Doroshenko, A. & Halperin, S. A. ( 2009; ). Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines). Expert Rev Vaccines 8, 679–688.[CrossRef]
    [Google Scholar]
  9. Ehrhardt, C., Kardinal, C., Wurzer, W. J., Wolff, T., von Eichel-Streiber, C., Pleschka, S., Planz, O. & Ludwig, S. ( 2004; ). Rac1 and PAK1 are upstream of IKK-ϵ and TBK-1 in the viral activation of interferon regulatory factor-3. FEBS Lett 567, 230–238.[CrossRef]
    [Google Scholar]
  10. Flohr, F., Schneider-Schaulies, S., Haller, O. & Kochs, G. ( 1999; ). The central interactive region of human MxA GTPase is involved in GTPase activation and interaction with viral target structures. FEBS Lett 463, 24–28.[CrossRef]
    [Google Scholar]
  11. García-Sastre, A., Egorov, A., Matassov, D., Brandt, S., Levy, D. E., Durbin, J. E., Palese, P. & Muster, T. ( 1998; ). Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324–330.[CrossRef]
    [Google Scholar]
  12. Gaush, C. R. & Smith, T. F. ( 1968; ). Replication and plaque assay of influenza virus in an established line of canine kidney cells. Appl Microbiol 16, 588–594.
    [Google Scholar]
  13. Geiss, G. K., Salvatore, M., Tumpey, T. M., Carter, V. S., Wang, X., Basler, C. F., Taubenberger, J. K., Bumgarner, R. E., Palese, P. & other authors ( 2002; ). Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc Natl Acad Sci U S A 99, 10736–10741.[CrossRef]
    [Google Scholar]
  14. Genzel, Y. & Reichl, U. ( 2009; ). Continuous cell lines as a production system for influenza vaccines. Expert Rev Vaccines 8, 1681–1692.[CrossRef]
    [Google Scholar]
  15. Genzel, Y., Behrendt, I., König, S., Sann, H. & Reichl, U. ( 2004; ). Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture. Vaccine 22, 2202–2208.[CrossRef]
    [Google Scholar]
  16. Govorkova, E. A., Kodihalli, S., Alymova, I. V., Fanget, B. & Webster, R. G. ( 1999; ). Growth and immunogenicity of influenza viruses cultivated in Vero or MDCK cells and in embryonated chicken eggs. Dev Biol Stand 98, 39–51. (discussion 73–34)
    [Google Scholar]
  17. Grimm, D., Staeheli, P., Hufbauer, M., Koerner, I., Martínez-Sobrido, L., Solórzano, A., García-Sastre, A., Haller, O. & Kochs, G. ( 2007; ). Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proc Natl Acad Sci U S A 104, 6806–6811.[CrossRef]
    [Google Scholar]
  18. Hale, B. G., Randall, R. E., Ortin, J. & Jackson, D. ( 2008; ). The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89, 2359–2376.[CrossRef]
    [Google Scholar]
  19. Haller, O., Kochs, G. & Weber, F. ( 2006; ). The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344, 119–130.[CrossRef]
    [Google Scholar]
  20. Haller, O., Staeheli, P. & Kochs, G. ( 2009; ). Protective role of interferon-induced Mx GTPases against influenza viruses. Rev Sci Tech 28, 219–231.
    [Google Scholar]
  21. Harder, T. C. & Vahlenkamp, T. W. ( 2010; ). Influenza virus infections in dogs and cats. Vet Immunol Immunopathol 134, 54–60.[CrossRef]
    [Google Scholar]
  22. Hayman, A., Comely, S., Lackenby, A., Murphy, S., McCauley, J., Goodbourn, S. & Barclay, W. ( 2006; ). Variation in the ability of human influenza A viruses to induce and inhibit the IFN-β pathway. Virology 347, 52–64.[CrossRef]
    [Google Scholar]
  23. Hayman, A., Comely, S., Lackenby, A., Hartgroves, L. C. S., Goodbourn, S., McCauley, J. W. & Barclay, W. S. ( 2007; ). NS1 proteins of avian influenza A viruses can act as antagonists of the human alpha/beta interferon response. J Virol 81, 2318–2327.[CrossRef]
    [Google Scholar]
  24. Hoffmann, E., Stech, J., Guan, Y., Webster, R. G. & Perez, D. R. ( 2001; ). Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146, 2275–2289.[CrossRef]
    [Google Scholar]
  25. Holzinger, D., Jorns, C., Stertz, S., Boisson-Dupuis, S., Thimme, R., Weidmann, M., Casanova, J. L., Haller, O. & Kochs, G. ( 2007; ). Induction of MxA gene expression by influenza A virus requires type I or type III interferon signaling. J Virol 81, 7776–7785.[CrossRef]
    [Google Scholar]
  26. Honda, K. & Taniguchi, T. ( 2006; ). IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6, 644–658.[CrossRef]
    [Google Scholar]
  27. Kalbfuss, B., Knochlein, A., Krober, T. & Reichl, U. ( 2008; ). Monitoring influenza virus content in vaccine production: precise assays for the quantitation of hemagglutination and neuraminidase activity. Biologicals 36, 145–161.[CrossRef]
    [Google Scholar]
  28. Kim, M.-J., Latham, A. G. & Krug, R. M. ( 2002; ). Human influenza viruses activate an interferon-independent transcription of cellular antiviral genes: outcome with influenza A virus is unique. Proc Natl Acad Sci U S A 99, 10096–10101.[CrossRef]
    [Google Scholar]
  29. Kochs, G., García-Sastre, A. & Martínez-Sobrido, L. ( 2007a; ). Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol 81, 7011–7021.[CrossRef]
    [Google Scholar]
  30. Kochs, G., Koerner, I., Thiel, L., Kothlow, S., Kaspers, B., Ruggli, N., Summerfield, A., Pavlovic, J., Stech, J. & Staeheli, P. ( 2007b; ). Properties of H7N7 influenza A virus strain SC35M lacking interferon antagonist NS1 in mice and chickens. J Gen Virol 88, 1403–1409.[CrossRef]
    [Google Scholar]
  31. Kochs, G., Martínez-Sobrido, L., Lienenklaus, S., Weiss, S., García-Sastre, A. & Staeheli, P. ( 2009; ). Strong interferon-inducing capacity of a highly virulent variant of influenza A virus strain PR8 with deletions in the NS1 gene. J Gen Virol 90, 2990–2994.[CrossRef]
    [Google Scholar]
  32. Koerner, I., Kochs, G., Kalinke, U., Weiss, S. & Staeheli, P. ( 2007; ). Protective role of beta interferon in host defense against influenza A virus. J Virol 81, 2025–2030.[CrossRef]
    [Google Scholar]
  33. Li, I. W., Chan, K. H., To, K. W., Wong, S. S., Ho, P. L., Lau, S. K., Woo, P. C., Tsoi, H. W., Chan, J. F. & other authors ( 2009; ). Differential susceptibility of different cell lines to swine-origin influenza A H1N1, seasonal human influenza A H1N1, and avian influenza A H5N1 viruses. J Clin Virol 46, 325–330.[CrossRef]
    [Google Scholar]
  34. Matikainen, S., Pirhonen, J., Miettinen, M., Lehtonen, A., Govenius-Vintola, C., Sareneva, T. & Julkunen, I. ( 2000; ). Influenza A and Sendai viruses induce differential chemokine gene expression and transcription factor activation in human macrophages. Virology 276, 138–147.[CrossRef]
    [Google Scholar]
  35. Morozumi, T., Naito, T., Lan, P. D., Nakajima, E., Mitsuhashi, T., Mikawa, S., Hayashi, T., Awata, T., Uenishi, H. & other authors ( 2009; ). Molecular cloning and characterization of porcine Mx2 gene. Mol Immunol 46, 858–865.[CrossRef]
    [Google Scholar]
  36. Murakami, S., Horimoto, T., Mai, L. Q., Nidom, C. A., Chen, H., Muramoto, Y., Yamada, S., Iwasa, A., Iwatsuki-Horimoto, K. & other authors ( 2008; ). Growth determinants for H5N1 influenza vaccine seed viruses in MDCK cells. J Virol 82, 10502–10509.[CrossRef]
    [Google Scholar]
  37. Nakamura, T., Asano, A., Okano, S., Ko, J.-H., Kon, Y., Watanabe, T. & Agui, T. ( 2005; ). Intracellular localization and antiviral property of canine Mx proteins. J Interferon Cytokine Res 25, 169–173.[CrossRef]
    [Google Scholar]
  38. Niwa, H., Yamamura, K. & Miyazaki, J. ( 1991; ). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199.[CrossRef]
    [Google Scholar]
  39. Noah, D. L., Twu, K. Y. & Krug, R. M. ( 2003; ). Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3′ end processing of cellular pre-mRNAS. Virology 307, 386–395.[CrossRef]
    [Google Scholar]
  40. Pitossi, F., Blank, A., Schroder, A., Schwarz, A., Hussi, P., Schwemmle, M., Pavlovic, J. & Staeheli, P. ( 1993; ). A functional GTP-binding motif is necessary for antiviral activity of Mx proteins. J Virol 67, 6726–6732.
    [Google Scholar]
  41. Randall, R. E. & Goodbourn, S. ( 2008; ). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89, 1–47.[CrossRef]
    [Google Scholar]
  42. Rieder, M. & Conzelmann, K. K. ( 2009; ). Rhabdovirus evasion of the interferon system. J Interferon Cytokine Res 29, 499–509.[CrossRef]
    [Google Scholar]
  43. Ronni, T., Matikainen, S., Sareneva, T., Melén, K., Pirhonen, J., Keskinen, P. & Julkunen, I. ( 1997; ). Regulation of IFN-α/β, MxA, 2′,5′-oligoadenylate synthetase, and HLA gene expression in influenza A-infected human lung epithelial cells. J Immunol 158, 2363–2374.
    [Google Scholar]
  44. Schulze-Horsel, J., Schulze, M., Agalaridis, G., Genzel, Y. & Reichl, U. ( 2009; ). Infection dynamics and virus-induced apoptosis in cell culture-based influenza vaccine production – flow cytometry and mathematical modeling. Vaccine 27, 2712–2722.[CrossRef]
    [Google Scholar]
  45. Seo, S. H., Hoffmann, E. & Webster, R. G. ( 2002; ). Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8, 950–954.[CrossRef]
    [Google Scholar]
  46. Sherwood, V., Burgert, H. G., Chen, Y. H., Sanghera, S., Katafigiotis, S., Randall, R. E., Connerton, I. & Mellits, K. H. ( 2007; ). Improved growth of enteric adenovirus type 40 in a modified cell line that can no longer respond to interferon stimulation. J Gen Virol 88, 71–76.[CrossRef]
    [Google Scholar]
  47. Stertz, S., Dittmann, J., Blanco, J. C., Pletneva, L. M., Haller, O. & Kochs, G. ( 2007; ). The antiviral potential of interferon-induced cotton rat Mx proteins against orthomyxovirus (influenza), rhabdovirus, and bunyavirus. J Interferon Cytokine Res 27, 847–855.[CrossRef]
    [Google Scholar]
  48. Talon, J., Horvath, C. M., Polley, R., Basler, C. F., Muster, T., Palese, P. & García-Sastre, A. ( 2000; ). Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol 74, 7989–7996.[CrossRef]
    [Google Scholar]
  49. Ulmer, J. B., Valley, U. & Rappuoli, R. ( 2006; ). Vaccine manufacturing: challenges and solutions. Nat Biotechnol 24, 1377–1383.[CrossRef]
    [Google Scholar]
  50. Vester, D., Rapp, E., Gade, D., Genzel, Y. & Reichl, U. ( 2009; ). Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines. Proteomics 9, 3316–3327.[CrossRef]
    [Google Scholar]
  51. Wolff, T. & Ludwig, S. ( 2009; ). Influenza viruses control the vertebrate type I interferon system: factors, mechanisms, and consequences. J Interferon Cytokine Res 29, 549–557.[CrossRef]
    [Google Scholar]
  52. Wood, J. S. & Robertson, J. S. ( 2007; ). Reference viruses for seasonal and pandemic influenza vaccine preparation. Influenza Other Respi Viruses 1, 5–9.
    [Google Scholar]
  53. Young, D. F., Andrejeva, L., Livingstone, A., Goodbourn, S., Lamb, R. A., Collins, P. L., Elliott, R. M. & Randall, R. E. ( 2003; ). Virus replication in engineered human cells that do not respond to interferons. J Virol 77, 2174–2181.[CrossRef]
    [Google Scholar]
  54. Zeng, H., Goldsmith, C., Thawatsupha, P., Chittaganpitch, M., Waicharoen, S., Zaki, S., Tumpey, T. M. & Katz, J. M. ( 2007; ). Highly pathogenic avian influenza H5N1 viruses elicit an attenuated type I interferon response in polarized human bronchial epithelial cells. J Virol 81, 12439–12449.[CrossRef]
    [Google Scholar]
  55. Zurcher, T., Pavlovic, J. & Staeheli, P. ( 1992; ). Mechanism of human MxA protein action: variants with changed antiviral properties. EMBO J 11, 1657–1661.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.020370-0
Loading
/content/journal/jgv/10.1099/vir.0.020370-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1754 - 1763

Nucleotide sequences of qRT-PCR primers [PDF](81 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error