High-titre retroviral vector system for efficient gene delivery into human and mouse cells of haematopoietic and lymphocytic lineages Free

Abstract

Genetically modified cells of haematopoietic and lymphocytic lineages could provide potentially curative treatments for a wide range of inherited and acquired diseases. However, this application is limited in mouse models by the low efficiency of lentiviral vectors. To facilitate the rapid production of high-titre helper-free retroviral vectors for enhanced gene delivery, multiple modifications to a prototype moloney murine leukemia virus (MoMLV)-derived vector system were made including adaptation of the vector system to simian virus 40 /T antigen-mediated episomal replication in packaging cells, replacement of the MoMLV 5′ U3 promoter with a series of stronger composite promoters and addition of an extra polyadenylation signal downstream of the 3′ long terminal repeat. These modifications enhanced vector production by 2–3 logs. High-titre vector stocks were tested for their ability to infect a variety of cells derived from humans and mice, including primary monocyte-derived macrophage cultures. Whilst the lentiviral vector was significantly restricted at the integration level, the MoMLV-based vector showed effective gene transduction of mouse cells. This high-titre retroviral vector system represents a useful tool for efficient gene delivery into human and mouse haematopoietic and lymphocytic cells, with particular application in mice as a small animal model for novel gene therapy tests.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.020255-0
2010-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/8/1909.html?itemId=/content/journal/jgv/10.1099/vir.0.020255-0&mimeType=html&fmt=ahah

References

  1. Aiuti A., Cattaneo F., Galimberti S., Benninghoff U., Cassani B., Callegaro L., Scaramuzza S., Andolfi G., Mirolo M. other authors 2009; Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360:447–458
    [Google Scholar]
  2. Ayuk F. A., Zander A. R., Fehse B. 2001; T lymphocytes as targets of gene transfer with Moloney-type retroviral vectors. Curr Gene Ther 1:325–337
    [Google Scholar]
  3. Burke B., Sumner S., Maitland N., Lewis C. E. 2002; Macrophages in gene therapy: cellular delivery vehicles and in vivo targets. J Leukoc Biol 72:417–428
    [Google Scholar]
  4. Campbell R. E., Tour O., Palmer A. E., Steinbach P. A., Baird G. S., Zacharias D. A., Tsien R. Y. 2002; A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99:7877–7882
    [Google Scholar]
  5. Cartier N., Hacein-Bey-Abina S., Bartholomae C. C., Veres G., Schmidt M., Kutschera I., Vidaud M., Abel U., Dal-Cortivo L. other authors 2009; Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823
    [Google Scholar]
  6. Clay T. M., Custer M. C., Spiess P. J., Nishimura M. I. 1999; Potential use of T cell receptor genes to modify hematopoietic stem cells for the gene therapy of cancer. Pathol Oncol Res 5:3–15
    [Google Scholar]
  7. Cockrell A. S., Kafri T. 2003; HIV-1 vectors: fulfilment of expectations, further advances, and still a way to go. Curr HIV Res 1:419–439
    [Google Scholar]
  8. Culver K., Cornetta K., Morgan R., Morecki S., Aebersold P., Kasid A., Lotze M., Rosenberg S. A., Anderson W. F., Blaese R. M. 1991; Lymphocytes as cellular vehicles for gene therapy in mouse and man. Proc Natl Acad Sci U S A 88:3155–3199
    [Google Scholar]
  9. Donahue R. E., Byrne E. R., Thomas T. E., Kirby M. R., Agricola B. A., Sellers S. E., Gaudernack G., Karisson S., Lansdorp P. M. 1996; Transplantation and gene transfer of the human glucocerebrosidase gene into immunoselected primate CD34+Thy-1+ cells. Blood 88:4166–4172
    [Google Scholar]
  10. Dou H., Destache C. J., Morehead J. R., Mosley R. L., Boska M. D., Kingsley J., Gorantla S., Poluektova L., Nelson J. A. other authors 2006; Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 108:2827–2835
    [Google Scholar]
  11. Dou H., Grotepas C. B., McMillan J. M., Destache C. J., Chaubal M., Werling J., Kipp J., Rabinow B., Gendelman H. E. 2009; Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183:661–669
    [Google Scholar]
  12. Fischer A., Cavazzana-Calvo M. 2008; Gene therapy of inherited diseases. Lancet 371:2044–2047
    [Google Scholar]
  13. Gough P. J., Raines E. W. 2003; Gene therapy of apolipoprotein E-deficient mice using a novel macrophage-specific retroviral vector. Blood 101:485–491
    [Google Scholar]
  14. Hawley R. G. 2001; Progress toward vector design for hematopoietic stem cell gene therapy. Curr Gene Ther 1:1–17
    [Google Scholar]
  15. Landau N. R., Littman D. R. 1992; Packaging system for rapid production of murine leukemia virus vectors with variable tropism. J Virol 66:5110–5113
    [Google Scholar]
  16. May T., Butueva M., Bantner S., Marcusic D., Seppen J., Weich H., Hauser H., Wirth D. 2009; Synthetic gene regulation circuits for control of cell expansion. Tissue Eng Part A 16:441–452
    [Google Scholar]
  17. McTaggart S., Al-Rubeai M. 2002; Retroviral vectors for human gene delivery. Biotechnol Adv 20:1–31
    [Google Scholar]
  18. Miller J. W. 2008; Preliminary results of gene therapy for retinal degeneration. N Engl J Med 358:2282–2284
    [Google Scholar]
  19. Naldini L. 2009; A comeback for gene therapy. Science 326:805–806
    [Google Scholar]
  20. Noser J. A., Towers G. J., Sakuma R., Dumont J.-M., Collins M. K. L., Ikeda Y. 2006; Cyclosporine increases human immunodeficiency virus type 1 vector transduction of primary mouse cells. J Virol 80:7769–7774
    [Google Scholar]
  21. Okasora T., Jo J. I., Tabata Y. 2008; Augmented anti-tumor therapy through natural targetability of macrophages genetically engineered by NK4 plasmid DNA. Gene Ther 15:524–530
    [Google Scholar]
  22. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. 1993; Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A 90:8392–8396
    [Google Scholar]
  23. Qin X. F., An D. S., Chen I. S., Baltimore D. 2003; Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A 100:183–188
    [Google Scholar]
  24. Roszkowski J. J., Lyons G. E., Kast W. M., Yee C., Van Besien K., Nishimura M. I. 2005; Simultaneous generation of CD8+ and CD4+ melanoma-reactive T cells by retroviral-mediated transfer of a single T-cell receptor. Cancer Res 65:1570–1576
    [Google Scholar]
  25. Schambach A., Mueller D., Galla M., Verstegen M. M. A., Wagemaker G., Loew R., Baum C., Bohne J. 2006; Overcoming promoter competition in packaging cells improves production of self-inactivating retroviral vectors. Gene Ther 13:1524–1533
    [Google Scholar]
  26. Sharova N., Wu Y., Zhu X., Stranska R., Kaushik R., Sharkey M., Stevenson M. 2008; Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction. PLoS Pathog 4:e1000057
    [Google Scholar]
  27. Soneoka Y., Cannon P. M., Ramsdale E. E., Griffiths J. C., Romano G., Kingsman S. M., Kingsman A. J. 1995; A transient three plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23:628–633
    [Google Scholar]
  28. Wilson H. M., Kluth D. C. 2003; Targeting genetically modified macrophages to the glomerulus. Nephron Exp Nephrol 94:e113–e118
    [Google Scholar]
  29. Wirth J. J., Theisen M. A., Crowle A. J. 1982; Culture conditions required for primary isolation and culture of mouse blood monocytes. J Reticuloendothel Soc 31:325–327
    [Google Scholar]
  30. Wu C., Lu Y. 2007; Inclusion of high molecular weight dextran in calcium phosphate-mediated transfection significantly improves gene transfer efficiency. Cell Mol Biol 53:67–74
    [Google Scholar]
  31. Wu C., Nerurkar V. R., Yanagihara R., Lu Y. 2008; Effective modifications for improved homologous recombination and high-efficiency generation of recombinant adenovirus-based vectors. J Virol Methods 153:120–128
    [Google Scholar]
  32. Zeng L., Yang S., Wu C., Ye L., Lu Y. 2006; Effective transduction of primary mouse blood and bone marrow-derived monocytes/macrophages by HIV-1-based defective lentiviral vectors. J Virol Methods 134:66–73
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.020255-0
Loading
/content/journal/jgv/10.1099/vir.0.020255-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed