1887

Abstract

Feline coronavirus (FCoV) is transmitted via the faecal–oral route and primarily infects enterocytes, but subsequently spreads by monocyte-associated viraemia. In some infected cats, virulent virus mutants induce feline infectious peritonitis (FIP), a fatal systemic disease that can develop in association with viraemia. Persistently infected, healthy carriers are believed to be important in the epidemiology of FIP, as they represent a constant source of FCoV, shed either persistently or intermittently in faeces. So far, the sites of virus persistence have not been determined definitely. The purpose of this study was to examine virus distribution and viral load in organs and gut compartments of specified-pathogen-free cats, orally infected with non-virulent type I FCoV, over different time periods and with or without detectable viraemia. The colon was identified as the major site of FCoV persistence and probable source for recurrent shedding, but the virus was shown also to persist in several other organs, mainly in tissue macrophages. These might represent additional sources for recurrent viraemia.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.020214-0
2010-07-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/7/1698.html?itemId=/content/journal/jgv/10.1099/vir.0.020214-0&mimeType=html&fmt=ahah

References

  1. Addie, D. D., Toth, S., Herrewegh, A. A. & Jarrett, O. ( 1996; ). Feline coronavirus in the intestinal contents of cats with feline infectious peritonitis. Vet Rec 139, 522–523.[CrossRef]
    [Google Scholar]
  2. Addie, D. D., Schaap, I. A. T., Nicolson, L. & Jarrett, O. ( 2003; ). Persistence and transmission of natural type I feline coronavirus infection. J Gen Virol 84, 2735–2744.[CrossRef]
    [Google Scholar]
  3. Benetka, V., Kubber-Heiss, A., Kolodziejek, J., Nowotny, N., Hofmann-Parisot, M. & Mostl, K. ( 2004; ). Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis. Vet Microbiol 99, 31–42.[CrossRef]
    [Google Scholar]
  4. Bilzer, M., Roggel, F. & Gerbes, A. L. ( 2006; ). Role of Kupffer cells in host defense and liver disease. Liver Int 26, 1175–1186.[CrossRef]
    [Google Scholar]
  5. Bingen, A., Nonnenmacher, H., Bastien-Valle, M. & Martin, J.-P. ( 2002; ). Tissues rich in macrophagic cells are the major sites of feline immunodeficiency virus uptake after intravenous inoculation into cats. Microbes Infect 4, 795–803.[CrossRef]
    [Google Scholar]
  6. Brain, J. D., Molina, R. M., deCamp, M. M. & Warner, A. E. ( 1999; ). Pulmonary intravascular macrophages: their contribution to the mononuclear phagocyte system in 13 species. Am J Physiol 276, L146–L154.
    [Google Scholar]
  7. Brown, M. A., Troyer, J. L., Pecon-Slattery, J., Roelke, M. E. & O’Brien, S. J. ( 2009; ). Genetics and pathogenesis of feline infectious peritonitis virus. Emerg Infect Dis 15, 1445–1452.[CrossRef]
    [Google Scholar]
  8. Can-Sahna, K., Ataseven, V. S., Pinar, D. & Oğuzoğlu, T. C. ( 2007; ). The detection of feline coronaviruses in blood samples from cats by mRNA RT-PCR. J Feline Med Surg 9, 369–372.[CrossRef]
    [Google Scholar]
  9. Carrasco, L., Sánchez, C., Gómez-Villamandos, J. C., Salguero, F. J., Bautista, M. J., Martinez-Torrecuadrada, J., Sánchez-Vizcaíno, J. M. & Sierra, M. A. ( 1999; ). The role of pulmonary intravascular macrophages in the pathogenesis of African horse sickness. J Comp Pathol 121, 25–38.[CrossRef]
    [Google Scholar]
  10. Carrasco, L., Ruiz-Villamor, E., Gómez-Villamandos, J. C., Salguero, F. J., Bautista, M. J., Macía, M., Quezada, M. & Jover, A. ( 2001; ). Classical swine fever: morphological and morphometric study of pulmonary intravascular macrophages. J Comp Pathol 125, 1–7.[CrossRef]
    [Google Scholar]
  11. Carrasco, L., Núñez, A., Salguero, F. J., Díaz San Segundo, F., Sánchez-Cordón, P., Gómez-Villamandos, J. C. & Sierra, M. A. ( 2002; ). African swine fever: expression of interleukin-1α and tumour necrosis factor-α by pulmonary intravascular macrophages. J Comp Pathol 126, 194–201.[CrossRef]
    [Google Scholar]
  12. Chang, H. W., de Groot, R. J., Egberink, H. F. & Rottier, P. J. ( 2010; ). Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene. J Gen Virol 91, 415–420.[CrossRef]
    [Google Scholar]
  13. Ciborowski, P. & Gendelman, H. E. ( 2006; ). Human immunodeficiency virus–mononuclear phagocyte interactions: emerging avenues of biomarker discovery, modes of viral persistence and disease pathogenesis. Curr HIV Res 4, 279–291.[CrossRef]
    [Google Scholar]
  14. Dewerchin, H. L., Cornelissen, E. & Nauwynck, H. J. ( 2006; ). Feline infectious peritonitis virus-infected monocytes internalize viral membrane-bound proteins upon antibody addition. J Gen Virol 87, 1685–1690.[CrossRef]
    [Google Scholar]
  15. Foley, J. E., Poland, A., Carlson, J. & Pedersen, N. C. ( 1997; ). Patterns of feline coronavirus infection and fecal shedding from cats in multiple-cat environments. J Am Vet Med Assoc 210, 1307–1312.
    [Google Scholar]
  16. Gunn-Moore, D. A., Gruffydd-Jones, T. J. & Harbour, D. A. ( 1998; ). Detection of feline coronaviruses by culture and reverse transcriptase-polymerase chain reaction of blood samples from healthy cats and cats with clinical feline infectious peritonitis. Vet Microbiol 62, 193–205.[CrossRef]
    [Google Scholar]
  17. Gut, M., Leutenegger, C. M., Huder, J. B., Pedersen, N. C. & Lutz, H. ( 1999; ). One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses. J Virol Methods 77, 37–46.[CrossRef]
    [Google Scholar]
  18. Harpold, L. M., Legendre, A. M., Kennedy, M. A., Plummer, P. J., Millsaps, K. & Rohrbach, B. ( 1999; ). Fecal shedding of feline coronavirus in adult cats and kittens in an Abyssinian cattery. J Am Vet Med Assoc 215, 948–951.
    [Google Scholar]
  19. Harrath, R., Bourlet, T., Delézay, O., Douche-Aourik, F., Omar, S., Aouni, M. & Pozzetto, B. ( 2004; ). Coxsackievirus B3 replication and persistence in intestinal cells from mice infected orally and in the human CaCo-2 cell line. J Med Virol 74, 283–290.[CrossRef]
    [Google Scholar]
  20. Herrewegh, A. A. P. M., de Groot, R. J., Cepica, A., Egberink, H. F., Horzinek, M. C. & Rottier, P. J. ( 1995; ). Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR. J Clin Microbiol 33, 684–689.
    [Google Scholar]
  21. Herrewegh, A. A. P. M., Mähler, M., Hedrich, H. J., Haagmans, B. J., Egberink, H. F., Horzinek, M. C., Rottier, P. J. M. & de Groot, R. J. ( 1997; ). Persistence and evolution of feline coronavirus in a closed cat-breeding colony. Virology 234, 349–363.[CrossRef]
    [Google Scholar]
  22. Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H. & Koyama, H. ( 1992; ). The prevalence of types I and II feline coronavirus infections in cats. J Vet Med Sci 54, 557–562.[CrossRef]
    [Google Scholar]
  23. Jacobse-Geels, H. E. L. & Horzinek, M. C. ( 1983; ). Expression of feline infectious peritonitis coronavirus antigens on the surface of feline macrophage-like cells. J Gen Virol 64, 1859–1866.[CrossRef]
    [Google Scholar]
  24. Kipar, A., Kremendahl, J., Addie, D. D., Leukert, W., Grant, C. K. & Reinacher, M. ( 1998; ). Fatal enteritis associated with coronavirus infection in cats. J Comp Pathol 119, 1–4.[CrossRef]
    [Google Scholar]
  25. Kipar, A., Bellmann, S., Gunn-Moore, D., Leukert, W., Köhler, K., Menger, S. & Reinacher, M. ( 1999; ). Histopathological alterations of lymphatic tissues in cats without feline infectious peritonitis after long-term exposure to FIP virus. Vet Microbiol 69, 131–137.[CrossRef]
    [Google Scholar]
  26. Kipar, A., Köhler, K., Leukert, W. & Reinacher, M. ( 2001; ). A comparison of lymphatic tissues from cats without feline infectious peritonitis (FIP), cats with FIP virus infection but no FIP, and cats with no infection. J Comp Pathol 125, 182–191.[CrossRef]
    [Google Scholar]
  27. Kipar, A., May, H., Menger, S., Weber, M., Leukert, W. & Reinacher, M. ( 2005; ). Morphological features and development of granulomatous vasculitis in feline infectious peritonitis. Vet Pathol 42, 321–330.[CrossRef]
    [Google Scholar]
  28. Kummrow, M., Meli, M. L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N. C., Hofmann-Lehmann, R. & Lutz, H. ( 2005; ). Feline coronavirus serotypes 1 and 2: seroprevalence and association with disease in Switzerland. Clin Diagn Lab Immunol 12, 1209–1225.
    [Google Scholar]
  29. Leutenegger, C. M., Klein, D., Hofmann-Lehmann, R., Mislin, C., Hummel, U., Böni, J., Boretti, F., Guenzburg, W. H. & Lutz, H. ( 1999; ). Rapid feline immunodeficiency virus provirus quantitation by polymerase chain reaction using the TaqMan fluorogenic real-time detection system. J Virol Methods 78, 105–116.[CrossRef]
    [Google Scholar]
  30. Lin, C.-N., Su, B.-L., Wang, C.-H., Hsieh, M.-W., Chueh, T.-J. & Chueh, L.-L. ( 2009; ). Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: a 5-year study in Taiwan. Vet Microbiol 136, 233–239.[CrossRef]
    [Google Scholar]
  31. Meli, M., Kipar, A., Müller, C., Jenal, K., Gönczi, E.-E., Borel, N., Gunn-Moore, D., Chalmers, S., Lin, F. & other authors ( 2004; ). High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats. J Feline Med Surg 6, 69–81.[CrossRef]
    [Google Scholar]
  32. Pedersen, N. C. ( 1976; ). Morphological and physical characteristics of feline infectious peritonitis virus and its growth in autochthonous peritoneal cell cultures. Am J Vet Res 37, 567–572.
    [Google Scholar]
  33. Pedersen, N. C. ( 1983; ). Feline infectious peritonitis and feline enteric coronavirus infections. Part I. Feline enteric coronaviruses. Feline Pract 13, 13–18.
    [Google Scholar]
  34. Pedersen, N. C. ( 1995; ). An overview of feline enteric coronavirus and infectious peritonitis virus infections. Feline Pract 23, 7–21.
    [Google Scholar]
  35. Pedersen, N. C. ( 2009; ). A review of feline infectious peritonitis virus infection: 1963–2008. J Feline Med Surg 11, 225–258.[CrossRef]
    [Google Scholar]
  36. Pedersen, N. C., Lin, H., Dodd, K. A. & Pesavento, P. A. ( 2009; ). Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis. Viruses 1, 166–184.[CrossRef]
    [Google Scholar]
  37. Platt, A. M. & Mowat, A. M. ( 2008; ). Mucosal macrophages and the regulation of immune responses in the intestine. Immunol Lett 119, 22–31.[CrossRef]
    [Google Scholar]
  38. Poland, A. M., Vennema, H., Foley, J. E. & Pedersen, N. C. ( 1996; ). Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J Clin Microbiol 34, 3180–3184.
    [Google Scholar]
  39. Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M. & Muller, W. A. ( 1999; ). Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761.[CrossRef]
    [Google Scholar]
  40. Sánchez-Cordón, P. J., Romero-Trevejo, J. L., Pedrera, M., Sánchez-Vizcaíno, J. M., Bautista, M. J. & Gómez-Villamandos, J. C. ( 2008; ). Role of hepatic macrophages during the viral haemorrhagic fever induced by African Swine Fever virus. Histol Histopathol 23, 683–691.
    [Google Scholar]
  41. Stoddart, C. A. & Scott, F. W. ( 1989; ). Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence. J Virol 63, 436–440.
    [Google Scholar]
  42. Thanawongnuwech, R., Thacker, E. L. & Halbur, P. G. ( 1997; ). Effect of porcine reproductive and respiratory syndrome virus (PRRSV) (isolate ATCC VR-2385) infection on bactericidal activity of porcine pulmonary intravascular macrophages (PIMs): in vitro comparisons with pulmonary alveolar macrophages (PAMs). Vet Immunol Immunopathol 59, 323–335.[CrossRef]
    [Google Scholar]
  43. Vennema, H. ( 1999; ). Genetic shift and drift during feline coronavirus evolution. Vet Microbiol 69, 139–141.[CrossRef]
    [Google Scholar]
  44. Vennema, H., Poland, A., Foley, J. & Pedersen, N. C. ( 1998; ). Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243, 150–157.[CrossRef]
    [Google Scholar]
  45. Zhang, Z. & Alexandersen, S. ( 2004; ). Quantitative analysis of foot-and-mouth disease virus RNA loads in bovine tissues: implications for the site of viral persistence. J Gen Virol 85, 2567–2575.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.020214-0
Loading
/content/journal/jgv/10.1099/vir.0.020214-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error