Bats are increasingly being recognized as important natural reservoirs of different viruses. Adeno-associated viruses (AAVs) are widely distributed in primates and their distribution in bats is unknown. In this study, a total of 370 faecal swab samples from 19 bat species were collected from various provinces of China and examined for the presence of AAVs. The mean prevalence rate was 22.4 % (83 positives out of 370 samples), ranging from 10 to 38.9 % among different bat species. The genome sequence spanning the entire ORFs was determined from one chosen AAV-positive sample (designated BtAAV-YNM). Phylogenetic analysis of the entire ORF coding sequences suggested that BtAAV-YNM is relatively distant to known primate AAVs, but phylogenetically closer to porcine AAV strain Po3. Further analysis of the partial ORF sequences of bat AAV samples (=49) revealed a remarkably large genetic diversity, with an average pairwise nucleotide identity of only 84.3 %. Co-presence of multiple distinctive genotypes of bat AAV within an individual sample was also observed. These results demonstrated that diverse AAVs might be widely distributed in bat populations.


Article metrics loading...

Loading full text...

Full text loading...



  1. Altringham, J. D., McOwat, T. & Hammond, L.(1996).The Evolution and Diversity of Bats. Bats: Biology and Behaviour. London, UK. : Oxford University Press. [Google Scholar]
  2. Arbetman, A. E., Lochrie, M., Zhou, S., Wellman, J., Scallan, C., Doroudchi, M. M., Randlev, B., Patarroyo-White, S., Liu, T. & other authors(2005). Novel caprine adeno-associated virus (AAV) capsid (AAV-Go.1) is closely related to the primate AAV-5 and has unique tropism and neutralization properties. J Virol 79, 15238–15245.[CrossRef] [Google Scholar]
  3. Atchison, R. W., Casto, B. C. & Hammon, W. M.(1965). Adenovirus-associated defective virus particles. Science 149, 754–756.[CrossRef] [Google Scholar]
  4. Bantel-Schaal, U. & zur Hausen, H.(1984). Characterization of the DNA of a defective human parvovirus isolated from a genital site. Virology 134, 52–63.[CrossRef] [Google Scholar]
  5. Bauer, H. J. & Monreal, G.(1986). Herpesviruses provide helper functions for avian adeno-associated parvovirus. J Gen Virol 67, 181–185.[CrossRef] [Google Scholar]
  6. Bello, A., Tran, K., Chand, A., Doria, M., Allocca, M., Hildinger, M., Beniac, D., Kranendonk, C., Auricchio, A. & other authors(2009). Isolation and evaluation of novel adeno-associated virus sequences from porcine tissues. Gene Ther 16, 1320–1328.[CrossRef] [Google Scholar]
  7. Bossis, I. & Chiorini, J. A.(2003). Cloning of an avian adeno-associated virus (AAAV) and generation of recombinant AAAV particles. J Virol 77, 6799–6810.[CrossRef] [Google Scholar]
  8. Brown, K. E., Green, S. W. & Young, N. S.(1995). Goose parvovirus – an autonomous member of the Dependovirus genus? Virology 210, 283–291.[CrossRef] [Google Scholar]
  9. Chiorini, J. A., Yang, L., Liu, Y., Safer, B. & Kotin, R. M.(1997). Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol 71, 6823–6833. [Google Scholar]
  10. Chiorini, J. A., Kim, F., Yang, L. & Kotin, R. M.(1999). Cloning and characterization of adeno-associated virus type 5. J Virol 73, 1309–1319. [Google Scholar]
  11. Drummond, A. J. & Rambaut, A.(2007).beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7, 214.[CrossRef] [Google Scholar]
  12. Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G.(2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22, 1185–1192.[CrossRef] [Google Scholar]
  13. Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A.(2006). Relaxed phylogenetics and dating with confidence. PLoS Biol 4, e88.[CrossRef] [Google Scholar]
  14. Eaton, B. T., Broder, C. C. & Wang, L. F.(2005). Hendra and Nipah viruses: pathogenesis and therapeutics. Curr Mol Med 5, 805–816.[CrossRef] [Google Scholar]
  15. Edgar, R. C.(2004).muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.[CrossRef] [Google Scholar]
  16. Farkas, S. L., Zadori, Z., Benko, M., Essbauer, S., Harrach, B. & Tijssen, P.(2004). A parvovirus isolated from royal python (Python regius) is a member of the genus Dependovirus. J Gen Virol 85, 555–561.[CrossRef] [Google Scholar]
  17. Gao, G. P., Alvira, M. R., Wang, L., Calcedo, R., Johnston, J. & Wilson, J. M.(2002). Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99, 11854–11859.[CrossRef] [Google Scholar]
  18. Gao, G., Alvira, M. R., Somanathan, S., Lu, Y., Vandenberghe, L. H., Rux, J. J., Calcedo, R., Sanmiguel, J., Abbas, Z. & Wilson, J. M.(2003). Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci U S A 100, 6081–6086.[CrossRef] [Google Scholar]
  19. Gao, G., Vandenberghe, L. H., Alvira, M. R., Lu, Y., Calcedo, R., Zhou, X. & Wilson, J. M.(2004). Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 78, 6381–6388.[CrossRef] [Google Scholar]
  20. Goncalves, M. A.(2005). Adeno-associated virus: from defective virus to effective vector. Virol J 2, 43.[CrossRef] [Google Scholar]
  21. Grieger, J. C. & Samulski, R. J.(2005). Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications. Adv Biochem Eng Biotechnol 99, 119–145. [Google Scholar]
  22. Guindon, S. & Gascuel, O.(2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef] [Google Scholar]
  23. Hess, M., Paul, G., Kling, S. & Monreal, G.(1995). Molecular characterization of two strains of the avian adeno-associated virus (AAAV). Arch Virol 140, 591–598.[CrossRef] [Google Scholar]
  24. Hoggan, M. D., Blacklow, N. R. & Rowe, W. P.(1966). Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci U S A 55, 1467–1474.[CrossRef] [Google Scholar]
  25. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  26. Lau, S. K., Woo, P. C., Li, K. S., Huang, Y., Tsoi, H. W., Wong, B. H., Wong, S. S., Leung, S. Y., Chan, K. H. & Yuen, K. Y.(2005). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102, 14040–14045.[CrossRef] [Google Scholar]
  27. Leroy, E. M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Delicat, A., Paweska, J. T., Gonzalez, J. P. & Swanepoel, R.(2005). Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576.[CrossRef] [Google Scholar]
  28. Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J. H., Wang, H., Crameri, G., Hu, Z. & other authors(2005). Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679.[CrossRef] [Google Scholar]
  29. Li, Y., Ge, X., Zhang, H., Zhou, P., Zhu, Y., Zhang, Y., Yuan, J., Wang, L. F. & Shi, Z.(2010). Host range, prevalence, and genetic diversity of adenoviruses in bats. J Virol 84, 3889–3897.[CrossRef] [Google Scholar]
  30. Maeda, K., Hondo, E., Terakawa, J., Kiso, Y., Nakaichi, N., Endoh, D., Sakai, K., Morikawa, S. & Mizutani, T.(2008). Isolation of novel adenovirus from fruit bat (Pteropus dasymallus yayeyamae). Emerg Infect Dis 14, 347–349.[CrossRef] [Google Scholar]
  31. Martin, D. P., Williamson, C. & Posada, D.(2005).rdp2: recombination detection and analysis from sequence alignments. Bioinformatics 21, 260–262.[CrossRef] [Google Scholar]
  32. Melnick, J. L., Mayor, H. D., Smith, K. & Rapp, F.(1965). Association of 20-millimicron particles with adenoviruses. J Bacteriol 90, 271–274. [Google Scholar]
  33. Molnar, V., Janoska, M., Harrach, B., Glavits, R., Palmai, N., Rigo, D., Sos, E. & Liptovszky, M.(2008). Detection of a novel bat gammaherpesvirus in Hungary. Acta Vet Hung 56, 529–538.[CrossRef] [Google Scholar]
  34. Mori, S., Wang, L., Takeuchi, T. & Kanda, T.(2004). Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. Virology 330, 375–383.[CrossRef] [Google Scholar]
  35. Muzyczka, N. & Berns, K. I.(2001).Parvoviridae: the viruses and their replication. In Fields Virology, 4th edn, pp. 2327–2360. Edited by Knipe, D. M. & Howley, P. M.. Philadelphia, PA. : Lippincott, Williams & Wilkins. [Google Scholar]
  36. Rutledge, E. A., Halbert, C. L. & Russell, D. W.(1998). Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 72, 309–319. [Google Scholar]
  37. Samulski, R. J., Berns, K. I., Tan, M. & Muzyczka, N.(1982). Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci U S A 79, 2077–2081.[CrossRef] [Google Scholar]
  38. Schlehofer, J. R., Heilbronn, R., Georg-Fries, B. & zur Hausen, H.(1983). Inhibition of initiator-induced SV40 gene amplification in SV40-transformed Chinese hamster cells by infection with a defective parvovirus. Int J Cancer 32, 591–595.[CrossRef] [Google Scholar]
  39. Schlehofer, J. R., Ehrbar, M. & zur Hausen, H.(1986). Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus. Virology 152, 110–117.[CrossRef] [Google Scholar]
  40. Schmidt, M., Katano, H., Bossis, I. & Chiorini, J. A.(2004). Cloning and characterization of a bovine adeno-associated virus. J Virol 78, 6509–6516.[CrossRef] [Google Scholar]
  41. Schmidt, M., Grot, E., Cervenka, P., Wainer, S., Buck, C. & Chiorini, J. A.(2006). Identification and characterization of novel adeno-associated virus isolates in ATCC virus stocks. J Virol 80, 5082–5085.[CrossRef] [Google Scholar]
  42. Schmidt, M., Voutetakis, A., Afione, S., Zheng, C., Mandikian, D. & Chiorini, J. A.(2008). Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid- and heparan sulfate proteoglycan-independent transduction activity. J Virol 82, 1399–1406.[CrossRef] [Google Scholar]
  43. Schnepp, B. C., Jensen, R. L., Chen, C. L., Johnson, P. R. & Clark, K. R.(2005). Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 79, 14793–14803.[CrossRef] [Google Scholar]
  44. Schnepp, B. C., Jensen, R. L., Clark, K. R. & Johnson, P. R.(2009). Infectious molecular clones of adeno-associated virus isolated directly from human tissues. J Virol 83, 1456–1464.[CrossRef] [Google Scholar]
  45. Shapiro, B., Rambaut, A. & Drummond, A. J.(2006). Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23, 7–9. [Google Scholar]
  46. Takeuchi, Y., Myers, R. & Danos, O.(2008). Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap. PLoS One 3, e1634.[CrossRef] [Google Scholar]
  47. Towner, J. S., Pourrut, X., Albarino, C. G., Nkogue, C. N., Bird, B. H., Grard, G., Ksiazek, T. G., Gonzalez, J. P., Nichol, S. T. & Leroy, E. M.(2007). Marburg virus infection detected in a common African bat. PLoS ONE 2, e764.[CrossRef] [Google Scholar]
  48. Wibbelt, G., Kurth, A., Yasmum, N., Bannert, M., Nagel, S., Nitsche, A. & Ehlers, B.(2007). Discovery of herpesviruses in bats. J Gen Virol 88, 2651–2655.[CrossRef] [Google Scholar]
  49. Wong, S., Lau, S., Woo, P. & Yuen, K. Y.(2007). Bats as a continuing source of emerging infections in humans. Rev Med Virol 17, 67–91.[CrossRef] [Google Scholar]
  50. Wu, Z., Asokan, A. & Samulski, R. J.(2006). Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14, 316–327.[CrossRef] [Google Scholar]
  51. Yakobson, B., Koch, T. & Winocour, E.(1987). Replication of adeno-associated virus in synchronized cells without the addition of a helper virus. J Virol 61, 972–981. [Google Scholar]
  52. Yalkinoglu, A. O., Heilbronn, R., Burkle, A., Schlehofer, J. R. & zur Hausen, H.(1988). DNA amplification of adeno-associated virus as a response to cellular genotoxic stress. Cancer Res 48, 3123–3129. [Google Scholar]

Data & Media loading...


vol. , part 10, pp. 2601 - 2609

Similarity of Rep and Cap proteins between BtAAV-YNM and other AAVs

Similarity plot of genomes between BtAAV-YNM and other AAVs

Large-scale maximum-likelihood (ML) phylogeny of all available and relevant AAVs [Single PDF file](251 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error