1887

Abstract

The movement protein (MP) of necrotic ringspot virus (PNRSV) is required for viral transport. Previous analysis with MPs of other members of the family has shown that the C-terminal part of these MPs plays a critical role in the interaction with the cognate coat protein (CP) and in cell-to-cell transport. Bimolecular fluorescence complementation and overlay analysis confirm an interaction between the C-terminal 38 aa of PNRSV MP and its cognate CP. Mutational analysis of the C-terminal region of the PNRSV MP revealed that its C-terminal 38 aa are dispensable for virus transport, however, the 4 aa preceding the dispensable C terminus are necessary to target the MP to the plasmodesmata and for the functionality of the protein. The capacity of the PNRSV MP to use either a CP-dependent or a CP-independent cell-to-cell transport is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.019950-0
2010-07-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/7/1865.html?itemId=/content/journal/jgv/10.1099/vir.0.019950-0&mimeType=html&fmt=ahah

References

  1. Akamatsu, N., Takeda, A., Kishimoto, M., Kaido, M., Okuno, T. & Mise, K. ( 2007; ). Phosphorylation and interaction of the movement and coat proteins of brome mosaic virus in infected barley protoplasts. Arch Virol 152, 2087–2093.[CrossRef]
    [Google Scholar]
  2. Aparicio, F. & Pallás, V. ( 2002; ). Molecular variability analysis of the RNA 3 of fifteen isolates of Prunus necrotic ringspot virus sheds light on the minimal requirements for the synthesis of the subgenomic RNA. Virus Genes 25, 75–84.[CrossRef]
    [Google Scholar]
  3. Aparicio, F., Sánchez-Navarro, J. A. & Pallás, V. ( 2006; ). In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation. J Gen Virol 87, 1745–1750.[CrossRef]
    [Google Scholar]
  4. Berna, A., Gafny, R., Wolf, S., Lucas, W. J., Holt, C. A. & Beachy, R. N. ( 1991; ). The TMV movement protein: role of the C-terminal 73 amino acids in subcellular localization and function. Virology 182, 682–689.[CrossRef]
    [Google Scholar]
  5. Bol, J. F. ( 2005; ). Replication of alfamo- and ilarviruses: role of the coat protein. Annu Rev Phytopathol 43, 39–62.[CrossRef]
    [Google Scholar]
  6. Carvalho, C. M., Wellink, J., Ribeiro, S. G., Goldbach, R. W. & van Lent, J. W. M. ( 2003; ). The C-terminal region of the movement protein of Cowpea mosaic virus is involved in binding to the large but not to the small coat protein. J Gen Virol 84, 2271–2277.[CrossRef]
    [Google Scholar]
  7. Chen, M.-H., Sheng, J., Hind, G., Handa, A. K. & Citovsky, V. ( 2000; ). Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19, 913–920.[CrossRef]
    [Google Scholar]
  8. Codoñer, F. M., Fares, M. A. & Elena, S. F. ( 2006; ). Adaptive covariation between the coat and movement proteins of Prunus necrotic ringspot virus. J Virol 80, 5833–5840.[CrossRef]
    [Google Scholar]
  9. Cooper, B., Schmitz, I., Rao, A. L. N., Beachy, R. N. & Dodds, J. A. ( 1996; ). Cell-to-cell transport of movement-defective cucumber mosaic and tobacco mosaic viruses in transgenic plants expressing heterologous movement protein genes. Virology 216, 208–213.[CrossRef]
    [Google Scholar]
  10. Fiore, N., Fajardo, T. V. M., Prodan, S., Herranz, M. C., Aparicio, F., Montealegre, J., Elena, S. F., Pallas, V. & Sanchez-Navarro, J. A. ( 2008; ). Genetic diversity of the movement and coat protein genes of South American isolates of Prunus necrotic ringspot virus. Arch Virol 153, 909–919.[CrossRef]
    [Google Scholar]
  11. Herranz, M. C., Sanchez-Navarro, J. A., Sauri, A., Mingarro, I. & Pallas, V. ( 2005; ). Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement. Virology 339, 31–41.[CrossRef]
    [Google Scholar]
  12. Huang, M., Jongejan, L., Zheng, H., Zhang, L. & Bol, J. F. ( 2001; ). Intracellular localization and movement phenotypes of Alfalfa mosaic virus movement protein mutants. Mol Plant Microbe Interact 14, 1063–1074.[CrossRef]
    [Google Scholar]
  13. Kim, S. H., Kalinina, N. O., Andreev, I., Ryabov, E. V., Fitzgerald, A. G., Taliansky, M. E. & Palukaitis, P. ( 2004; ). The C-terminal 33 amino acids of cucumber mosaic virus 3a protein affect virus movement, RNA binding and inhibition of infection and translation. J Gen Virol 85, 221–230.[CrossRef]
    [Google Scholar]
  14. Melcher, U. ( 2000; ). The “30K” superfamily of viral movement proteins. J Gen Virol 81, 257–266.
    [Google Scholar]
  15. Nagano, H., Okuno, T., Mise, K. & Furusawa, I. ( 1997; ). Deletion of the C-terminal 33 amino acids of cucumber mosaic virus movement protein enables a chimeric brome mosaic virus to move from cell to cell. J Virol 71, 2270–2276.
    [Google Scholar]
  16. Nagano, H., Mise, K., Furusawa, I. & Okuno, T. ( 2001; ). Conversion in the requirement of coat protein in cell-to-cell movement mediated by the cucumber mosaic virus movement protein. J Virol 75, 8045–8053.[CrossRef]
    [Google Scholar]
  17. Sánchez-Navarro, J. A. & Bol, J. F. ( 2001; ). Role of the Alfalfa mosaic virus movement protein and coat protein in virus transport. Mol Plant Microbe Interact 14, 1051–1062.[CrossRef]
    [Google Scholar]
  18. Sánchez-Navarro, J. A. & Pallás, V. ( 1997; ). Evolutionary relationships in the ilarviruses: nucleotide sequence of prunus necrotic ringspot virus RNA 3. Arch Virol 142, 749–763.[CrossRef]
    [Google Scholar]
  19. Sánchez-Navarro, J. A., Herranz, M. C. & Pallás, V. ( 2006; ). Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses, and does not require virion formation. Virology 346, 66–73.[CrossRef]
    [Google Scholar]
  20. Stavolone, L., Villani, M. E., Leclerc, D. & Hohn, T. ( 2005; ). A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. Proc Natl Acad Sci U S A 102, 6219–6224.[CrossRef]
    [Google Scholar]
  21. Takeda, A., Masanori, K., Okuno, T. & Mise, K. ( 2004; ). The C terminus of the movement protein of Brome mosaic virus controls the requirement for coat protein in cell-to-cell movement and plays a role in long-distance movement. J Gen Virol 85, 1751–1761.[CrossRef]
    [Google Scholar]
  22. Takeda, A., Nakamura, W., Sasaki, N., Goto, K., Kaido, M., Okuno, T. & Mise, K. ( 2005; ). Natural isolates of Brome mosaic virus with the ability to move from cell to cell independently of coat protein. J Gen Virol 86, 1201–1211.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.019950-0
Loading
/content/journal/jgv/10.1099/vir.0.019950-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1865 - 1870

Average size of twenty infection foci of chimeric AMV RNA 3 [PDF](44 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error