1887

Abstract

Chimeric yellow fever virus 17D (YFV-17D) and dengue virus type 2 (DENV2) carrying the surface proteins of Modoc virus (MODV), a not-known-vector (NKV) flavivirus, replicated efficiently in mammalian (Vero-B) and mosquito (C6/36) cells, whereas MODV failed to replicate in mosquito cells. Transfection of C6/36 cells with MODV RNA did not result in virus replication; however, transfection of these mosquito cells with YFV-17D or DENV2 RNA did. The inability of NKV viruses (such as MODV) to infect and replicate in arthropod cells is thus not determined by the viral envelope, but by a post-entry event.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.019851-0
2010-07-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/7/1693.html?itemId=/content/journal/jgv/10.1099/vir.0.019851-0&mimeType=html&fmt=ahah

References

  1. Acosta, E. G., Castilla, V. & Damonte, E. B. ( 2009; ). Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol 11, 1533–1549.[CrossRef]
    [Google Scholar]
  2. Alen, M. M., Kaptein, S. J., De Burghgraeve, T., Balzarini, J., Neyts, J. & Schols, D. ( 2009; ). Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection. Virology 387, 67–75.[CrossRef]
    [Google Scholar]
  3. Brackney, D. E., Beane, J. E. & Ebel, G. D. ( 2009; ). RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog 5, e1000502 [CrossRef]
    [Google Scholar]
  4. Bredenbeek, P. J., Kooi, E. A., Lindenbach, B., Huijkman, N., Rice, C. M. & Spaan, W. J. ( 2003; ). A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. J Gen Virol 84, 1261–1268.[CrossRef]
    [Google Scholar]
  5. Charlier, N., Molenkamp, R., Leyssen, P., Vandamme, A.-M., De Clercq, E., Bredenbeek, P. & Neyts, J. ( 2003; ). A rapid and convenient variant of fusion-PCR to construct chimeric flaviviruses. J Virol Methods 108, 67–74.[CrossRef]
    [Google Scholar]
  6. Charlier, N., Molenkamp, R., Leyssen, P., Paeshuyse, J., Drosten, C., Panning, M., De Clercq, E., Bredenbeek, P. J. & Neyts, J. ( 2004; ). Exchanging the yellow fever virus envelope proteins with Modoc virus prM and E proteins results in a chimeric virus that is neuroinvasive in SCID mice. J Virol 78, 7418–7426.[CrossRef]
    [Google Scholar]
  7. Chu, J. J. & Ng, M. L. ( 2004; ). Interaction of West Nile virus with αvβ3 integrin mediates virus entry into cells. J Biol Chem 279, 54533–54541.[CrossRef]
    [Google Scholar]
  8. Chu, J. J., Leong, P. W. & Ng, M. L. ( 2005; ). Characterization of plasma membrane-associated proteins from Aedes albopictus mosquito (C6/36) cells that mediate West Nile virus binding and infection. Virology 339, 249–260.[CrossRef]
    [Google Scholar]
  9. De Nova-Ocampo, M., Villegas-Sepulveda, N. & Del Angel, R. M. ( 2002; ). Translation elongation factor-1α, La, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA. Virology 295, 337–347.[CrossRef]
    [Google Scholar]
  10. Edgil, D., Polacek, C. & Harris, E. ( 2006; ). Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 80, 2976–2986.[CrossRef]
    [Google Scholar]
  11. Fernandez-Garcia, M. D., Mazzon, M., Jacobs, M. & Amara, A. ( 2009; ). Pathogenesis of flavivirus infections, using and abusing the host cell. Cell Host Microbe 5, 318–328.[CrossRef]
    [Google Scholar]
  12. Gualano, R. C., Pryor, M. J., Cauchi, M. R., Wright, P. J. & Davidson, A. D. ( 1998; ). Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. J Gen Virol 79, 437–446.
    [Google Scholar]
  13. Isken, O., Grassmann, C. W., Sarisky, R. T., Kann, M., Zhang, S., Grosse, F., Kao, P. N. & Behrens, S. E. ( 2003; ). Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus. EMBO J 22, 5655–5665.[CrossRef]
    [Google Scholar]
  14. Jindadamrongwech, S., Thepparit, C. & Smith, D. R. ( 2004; ). Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149, 915–927.[CrossRef]
    [Google Scholar]
  15. Kim, S. M. & Jeong, Y. S. ( 2006; ). Polypyrimidine tract-binding protein interacts with the 3′ stem–loop region of Japanese encephalitis virus negative-strand RNA. Virus Res 115, 131–140.[CrossRef]
    [Google Scholar]
  16. Krishnan, M. N., Ng, A., Sukumaran, B., Gilfoy, F. D., Uchil, P. D., Sultana, H., Brass, A. L., Adametz, R., Tsui, M. & other authors ( 2008; ). RNA interference screen for human genes associated with West Nile virus infection. Nature 455, 242–247.[CrossRef]
    [Google Scholar]
  17. Kwan, W. H., Navarro-Sanchez, E., Dumortier, H., Decossas, M., Vachon, H., dos Santos, F. B, Fridman, H. W., Rey, F. A., Harris, E. & other authors ( 2008; ). Dermal-type macrophages expressing CD209/DC-SIGN show inherent resistance to dengue virus growth. PLoS Negl Trop Dis 2, e311 [CrossRef]
    [Google Scholar]
  18. Lawrie, C. H., Uzcategui, N. Y., Armesto, M., Bell-Sakyi, L. & Gould, E. A. ( 2004; ). Susceptibility of mosquito and tick cell lines to infection with various flaviviruses. Med Vet Entomol 18, 268–274.[CrossRef]
    [Google Scholar]
  19. Lee, E., Wright, P. J., Davidson, A. & Lobigs, M. ( 2006; ). Virulence attenuation of dengue virus due to augmented glycosaminoglycan-binding affinity and restriction in extraneural dissemination. J Gen Virol 87, 2791–2801.[CrossRef]
    [Google Scholar]
  20. Leyssen, P., Van Lommel, A., Drosten, C., Schmitz, H., De Clercq, E. & Neyts, J. ( 2001; ). A novel model for the study of the therapy of flavivirus infections using the Modoc virus. Virology 279, 27–37.[CrossRef]
    [Google Scholar]
  21. Leyssen, P., Charlier, N., Lemey, P., Billoir, F., Vandamme, A.-M., De Clercq, E., de Lamballerie, X. & Neyts, J. ( 2002; ). Complete genome sequence, taxonomic assignment, and comparative analysis of the untranslated regions of the Modoc virus, a flavivirus with no known vector. Virology 293, 125–140.[CrossRef]
    [Google Scholar]
  22. Li, W., Li, Y., Kedersha, N., Anderson, P., Emara, M., Swiderek, K. M., Moreno, G. T. & Brinton, M. A. ( 2002; ). Cell proteins TIA-1 and TIAR interact with the 3′ stem–loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication. J Virol 76, 11989–12000.[CrossRef]
    [Google Scholar]
  23. Lindenbach, B. D. & Rice, C. M. ( 2001; ). Flaviviridae: the viruses and their replication. In Fields Virology, 4th edn, vol. 1, pp. 991–1041. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  24. Marques, J. T. & Carthew, R. W. ( 2007; ). A call to arms: coevolution of animal viruses and host innate immune responses. Trends Genet 23, 359–364.[CrossRef]
    [Google Scholar]
  25. Miller, J. L., de Wet, B. J., Martinez-Pomares, L., Radcliffe, C. M., Dwek, R. A., Rudd, P. M. & Gordon, S. ( 2008; ). The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4, e17 [CrossRef]
    [Google Scholar]
  26. Molenkamp, R., Kooi, E. A., Lucassen, M. A., Greve, S., Thijssen, J. C., Spaan, W. J. & Bredenbeek, P. J. ( 2003; ). Yellow fever virus replicons as an expression system for hepatitis C virus structural proteins. J Virol 77, 1644–1648.[CrossRef]
    [Google Scholar]
  27. Navarro-Sanchez, E., Altmeyer, R., Amara, A., Schwartz, O., Fieschi, F., Virelizier, J. L., Arenzana-Seisdedos, F. & Despres, P. ( 2003; ). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4, 723–728.[CrossRef]
    [Google Scholar]
  28. Okamoto, T., Nishimura, Y., Ichimura, T., Suzuki, K., Miyamura, T., Suzuki, T., Moriishi, K. & Matsuura, Y. ( 2006; ). Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J 25, 5015–5025.[CrossRef]
    [Google Scholar]
  29. Paranjape, S. M. & Harris, E. ( 2010; ). Control of dengue virus translation and replication. Curr Top Microbiol Immunol 338, 15–34.
    [Google Scholar]
  30. Pletnev, A. G. & Men, R. ( 1998; ). Attenuation of the Langat tick-borne flavivirus by chimerization with mosquito-borne flavivirus dengue type 4. Proc Natl Acad Sci U S A 95, 1746–1751.[CrossRef]
    [Google Scholar]
  31. Pletnev, A. G., Bray, M., Huggins, J. & Lai, C. J. ( 1992; ). Construction and characterization of chimeric tick-borne encephalitis/dengue type 4 viruses. Proc Natl Acad Sci U S A 89, 10532–10536.[CrossRef]
    [Google Scholar]
  32. Pryor, M. J., Carr, J. M., Hocking, H., Davidson, A. D., Li, P. & Wright, P. J. ( 2001; ). Replication of dengue virus type 2 in human monocyte-derived macrophages: comparisons of isolates and recombinant viruses with substitutions at amino acid 390 in the envelope glycoprotein. Am J Trop Med Hyg 65, 427–434.
    [Google Scholar]
  33. Pugachev, K. V., Guirakhoo, F., Ocran, S. W., Mitchell, F., Parsons, M., Penal, C., Girakhoo, S., Pougatcheva, S. O., Arroyo, J. & other authors ( 2004; ). High fidelity of yellow fever virus RNA polymerase. J Virol 78, 1032–1038.[CrossRef]
    [Google Scholar]
  34. Reyes-Del Valle, J., Chavez-Salinas, S., Medina, F. & Del Angel, R. M. ( 2005; ). Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79, 4557–4567.[CrossRef]
    [Google Scholar]
  35. Sanchez-Vargas, I., Scott, J. C., Poole-Smith, B. K., Franz, A. W., Barbosa-Solomieu, V., Wilusz, J., Olson, K. E. & Blair, C. D. ( 2009; ). Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog 5, e1000299 [CrossRef]
    [Google Scholar]
  36. Sessions, O. M., Barrows, N. J., Souza-Neto, J. A., Robinson, T. J., Hershey, C. L., Rodgers, M. A., Ramirez, J. L., Dimopoulos, G., Yang, P. L. & other authors ( 2009; ). Discovery of insect and human dengue virus host factors. Nature 458, 1047–1050.[CrossRef]
    [Google Scholar]
  37. Ta, M. & Vrati, S. J. ( 2000; ). Mov34 protein from mouse brain interacts with the 3′ noncoding region of Japanese encephalitis virus. J Virol 74, 5108–5115.[CrossRef]
    [Google Scholar]
  38. Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., Eller, M. A., Pattanapanyasat, K., Sarasombath, S. & other authors ( 2003; ). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197, 823–829.[CrossRef]
    [Google Scholar]
  39. Thepparit, C. & Smith, D. R. ( 2004; ). Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78, 12647–12656.[CrossRef]
    [Google Scholar]
  40. Voinnet, O. ( 2005; ). Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6, 206–220.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.019851-0
Loading
/content/journal/jgv/10.1099/vir.0.019851-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1693–1697

Release of viral RNA in supernatants of Vero-B and C6/36 mosquito cells infected with MODV, YFV-17D or MOD/YFV.

Release of viral RNA in supernatants of Vero-B and C6/36 mosquito cells infected with MODV, DENV2 or MOD/DENV2.

Increase in YFV RNA levels (either intracellularly or extracellularly) in Vero-B and C6/36 cells that have been transfected with YFV RNA in the absence or presence of ribavirin.

[ Single PDF file] (102 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error