The BGLF4 protein of Epstein–Barr virus (EBV) is a serine/threonine protein kinase that phosphorylates several viral and cellular substrates at cellular cyclin-dependent kinase target sites. BGLF4 is required for efficient viral DNA replication and release of mature virions. It also stimulates the transactivation activity of the immediate-early transactivator Zta (BZLF1) and suppresses the transactivation activities of BMRF1 and EBNA-2. This study aimed to characterize further the regulation of BGLF4 expression at the transcriptional and translational levels. It was shown that BGLF4 was expressed with early kinetics and reached maximal levels after DNA replication. The promoter activity of BGLF4 was upregulated mainly by the immediate-early transactivator Rta, rather than Zta, as revealed by Zta-specific short hairpin RNA in EBV-positive cells and by luciferase reporter assays. By rapid amplification of 5′ cDNA ends, two major transcriptional start sites were identified at 201 and 255 nt upstream of the first in-frame ATG of BGLF4 in P3HR1 cells. An additional transcript initiated from −468 was detected in Akata cells. The translation initiation site of BGLF4 was confirmed by mutagenesis, translation and transient transfection. The translation regulatory effect mediated by the long 5′-untranslated region (5′UTR) of BGLF4 was demonstrated by dual reporter assays in 293T and EBV-positive NA cells. These results suggested that different promoter usage and 5′UTR-mediated translation enhancement may ensure the proper expression of BGLF4 at various stages of virus replication.


Article metrics loading...

Loading full text...

Full text loading...



  1. Asai, R., Kato, A. & Kawaguchi, Y.(2009). Epstein–Barr virus protein kinase BGLF4 interacts with viral transactivator BZLF1 and regulates its transactivation activity. J Gen Virol 90, 1575–1581.[CrossRef] [Google Scholar]
  2. Biggin, M., Bodescot, M., Perricaudet, M. & Farrell, P.(1987). Epstein–Barr virus gene expression in P3HR1-superinfected Raji cells. J Virol 61, 3120–3132. [Google Scholar]
  3. Chang, Y., Tung, C. H., Huang, Y. T., Lu, J., Chen, J. Y. & Tsai, C. H.(1999). Requirement for cell-to-cell contact in Epstein–Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73, 8857–8866. [Google Scholar]
  4. Chang, Y., Chang, S. S., Lee, H. H., Doong, S. L., Takada, K. & Tsai, C. H.(2004). Inhibition of the Epstein–Barr virus lytic cycle by Zta-targeted RNA interference. J Gen Virol 85, 1371–1379.[CrossRef] [Google Scholar]
  5. Chee, M. S., Lawrence, G. L. & Barrell, B. G.(1989). Alpha-, beta- and gammaherpesviruses encode a putative phosphotransferase. J Gen Virol 70, 1151–1160.[CrossRef] [Google Scholar]
  6. Chen, C. & Okayama, H.(1987). High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7, 2745–2752. [Google Scholar]
  7. Chen, M. R., Hsu, T. Y., Chen, J. Y. & Yang, C. S.(1990). Molecular characterization of a cDNA clone encoding the Epstein–Barr virus (EBV) DNase. J Virol Methods 29, 127–141.[CrossRef] [Google Scholar]
  8. Chen, M. R., Chang, S. J., Huang, H. & Chen, J. Y.(2000). A protein kinase activity associated with Epstein–Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. J Virol 74, 3093–3104.[CrossRef] [Google Scholar]
  9. Crick, F. H.(1966). Codon–anticodon pairing: the wobble hypothesis. J Mol Biol 19, 548–555.[CrossRef] [Google Scholar]
  10. Feederle, R., Mehl-Lautscham, A. M., Bannert, H. & Delecluse, H. J.(2009). The Epstein–Barr virus protein kinase BGLF4 and the exonuclease BGLF5 have opposite effects on the regulation of viral protein production. J Virol 83, 10877–10891.[CrossRef] [Google Scholar]
  11. Gershburg, E. & Pagano, J. S.(2008). Conserved herpesvirus protein kinases. Biochim Biophys Acta 1784, 203–212.[CrossRef] [Google Scholar]
  12. Gershburg, E., Marschall, M., Hong, K. & Pagano, J. S.(2004). Expression and localization of the Epstein–Barr virus-encoded protein kinase. J Virol 78, 12140–12146.[CrossRef] [Google Scholar]
  13. Gershburg, E., Raffa, S., Torrisi, M. R. & Pagano, J. S.(2007). Epstein–Barr virus-encoded protein kinase (BGLF4) is involved in production of infectious virus. J Virol 81, 5407–5412.[CrossRef] [Google Scholar]
  14. Gruffat, H. & Sergeant, A.(1994). Characterization of the DNA-binding site repertoire for the Epstein–Barr virus transcription factor R. Nucleic Acids Res 22, 1172–1178.[CrossRef] [Google Scholar]
  15. Hellen, C. U. & Sarnow, P.(2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15, 1593–1612.[CrossRef] [Google Scholar]
  16. Isaksson, A., Berggren, M. & Ricksten, A.(2003). Epstein–Barr virus U leader exon contains an internal ribosome entry site. Oncogene 22, 572–581.[CrossRef] [Google Scholar]
  17. Isomura, H., Stinski, M. F., Kudoh, A., Murata, T., Nakayama, S., Sato, Y., Iwahori, S. & Tsurumi, T.(2008). Noncanonical TATA sequence in the UL44 late promoter of human cytomegalovirus is required for the accumulation of late viral transcripts. J Virol 82, 1638–1646.[CrossRef] [Google Scholar]
  18. Johannsen, E., Luftig, M., Chase, M. R., Weicksel, S., Cahir-McFarland, E., Illanes, D., Sarracino, D. & Kieff, E.(2004). Proteins of purified Epstein–Barr virus. Proc Natl Acad Sci U S A 101, 16286–16291.[CrossRef] [Google Scholar]
  19. Kato, K., Kawaguchi, Y., Tanaka, M., Igarashi, M., Yokoyama, A., Matsuda, G., Kanamori, M., Nakajima, K., Nishimura, Y. & other authors(2001). Epstein–Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1δ (EF-1δ): EF-1δ is universally modified by conserved protein kinases of herpesviruses in mammalian cells. J Gen Virol 82, 1457–1463. [Google Scholar]
  20. Kato, K., Yokoyama, A., Tohya, Y., Akashi, H., Nishiyama, Y. & Kawaguchi, Y.(2003). Identification of protein kinases responsible for phosphorylation of Epstein–Barr virus nuclear antigen leader protein at serine-35, which regulates its coactivator function. J Gen Virol 84, 3381–3392.[CrossRef] [Google Scholar]
  21. Kieff, E. D. & Rickinson, A. B.(2006). Epstein–Barr virus and its replication. In Fields Virology, 5th edn, pp. 2603–2700. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams & Wilkins.
  22. Kou, Y. H., Chou, S. M., Wang, Y. M., Chang, Y. T., Huang, S. Y., Jung, M. Y., Huang, Y. H., Chen, M. R., Chang, M. F. & Chang, S. C.(2006). Hepatitis C virus NS4A inhibits cap-dependent and the viral IRES-mediated translation through interacting with eukaryotic elongation factor 1A. J Biomed Sci 13, 861–874.[CrossRef] [Google Scholar]
  23. Kozak, M.(1989). The scanning model for translation: an update. J Cell Biol 108, 229–241.[CrossRef] [Google Scholar]
  24. Kudoh, A., Daikoku, T., Ishimi, Y., Kawaguchi, Y., Shirata, N., Iwahori, S., Isomura, H. & Tsurumi, T.(2006). Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the MCM4–MCM6–MCM7 complex during Epstein–Barr virus productive replication. J Virol 80, 10064–10072.[CrossRef] [Google Scholar]
  25. Latorre, P., Kolakofsky, D. & Curran, J.(1998). Sendai virus Y proteins are initiated by a ribosomal shunt. Mol Cell Biol 18, 5021–5031. [Google Scholar]
  26. Lee, C. P., Chen, J. Y., Wang, J. T., Kimura, K., Takemoto, A., Lu, C. C. & Chen, M. R.(2007). Epstein–Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II. J Virol 81, 5166–5180.[CrossRef] [Google Scholar]
  27. Lee, C. P., Huang, Y. H., Lin, S. F., Chang, Y., Chang, Y. H., Takada, K. & Chen, M. R.(2008). Epstein–Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J Virol 82, 11913–11926.[CrossRef] [Google Scholar]
  28. Liu, C., Sista, N. D. & Pagano, J. S.(1996). Activation of the Epstein–Barr virus DNA polymerase promoter by the BRLF1 immediate-early protein is mediated through USF and E2F. J Virol 70, 2545–2555. [Google Scholar]
  29. Lu, C. C., Jeng, Y. Y., Tsai, C. H., Liu, M. Y., Yeh, S. W., Hsu, T. Y. & Chen, M. R.(2006). Genome-wide transcription program and expression of the Rta responsive gene of Epstein–Barr virus. Virology 345, 358–372.[CrossRef] [Google Scholar]
  30. Masa, S. R., Lando, R. & Sarid, R.(2008). Transcriptional regulation of the open reading frame 35 encoded by Kaposi's sarcoma-associated herpesvirus. Virology 371, 14–31.[CrossRef] [Google Scholar]
  31. Michel, D., Pavic, I., Zimmermann, A., Haupt, E., Wunderlich, K., Heuschmid, M. & Mertens, T.(1996). The UL97 gene product of human cytomegalovirus is an early-late protein with a nuclear localization but is not a nucleoside kinase. J Virol 70, 6340–6346. [Google Scholar]
  32. Morley, S. J. & Coldwell, M. J.(2008). A cunning stunt: an alternative mechanism of eukaryotic translation initiation. Sci Signal 1, pe32 [Google Scholar]
  33. Overton, H. A., McMillan, D. J., Klavinskis, L. S., Hope, L., Ritchie, A. J. & Wong-Kai-In, P.(1992). Herpes simplex virus type 1 gene UL13 encodes a phosphoprotein that is a component of the virion. Virology 190, 184–192.[CrossRef] [Google Scholar]
  34. Park, J., Lee, D., Seo, T., Chung, J. & Choe, J.(2000). Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) open reading frame 36 protein is a serine protein kinase. J Gen Virol 81, 1067–1071. [Google Scholar]
  35. Ragoczy, T., Heston, L. & Miller, G.(1998). The Epstein–Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72, 7978–7984. [Google Scholar]
  36. Rowe, M., Glaunsinger, B., van Leeuwen, D., Zuo, J., Sweetman, D., Ganem, D., Middeldorp, J., Wiertz, E. J. & Ressing, M. E.(2007). Host shutoff during productive Epstein–Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci U S A 104, 3366–3371.[CrossRef] [Google Scholar]
  37. Su, I. J., Hsu, Y. H., Lin, M. T., Cheng, A. L., Wang, C. H. & Weiss, L. M.(1993). Epstein–Barr virus-containing T-cell lymphoma presents with hemophagocytic syndrome mimicking malignant histiocytosis. Cancer 72, 2019–2027.[CrossRef] [Google Scholar]
  38. Takada, K. & Ono, Y.(1989). Synchronous and sequential activation of latently infected Epstein–Barr virus genomes. J Virol 63, 445–449. [Google Scholar]
  39. Tsai, C. H., Williams, M. V. & Glaser, R.(1991). Characterization of two monoclonal antibodies to Epstein–Barr virus diffuse early antigen which react to two different epitopes and have different biological function. J Virol Methods 33, 47–52. [Google Scholar]
  40. Wang, J. T., Yang, P. W., Lee, C. P., Han, C. H., Tsai, C. H. & Chen, M. R.(2005). Detection of Epstein–Barr virus BGLF4 protein kinase in virus replication compartments and virus particles. J Gen Virol 86, 3215–3225.[CrossRef] [Google Scholar]
  41. Yue, W., Gershburg, E. & Pagano, J. S.(2005). Hyperphosphorylation of EBNA2 by Epstein–Barr virus protein kinase suppresses transactivation of the LMP1 promoter. J Virol 79, 5880–5885.[CrossRef] [Google Scholar]
  42. Yueh, A. & Schneider, R. J.(1996). Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells. Genes Dev 10, 1557–1567.[CrossRef] [Google Scholar]
  43. Yueh, A. & Schneider, R. J.(2000). Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes Dev 14, 414–421. [Google Scholar]
  44. Zuker, M.(2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 9, pp. 2186 - 2196

[PDF](65 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error