Geminiviruses are often associated with subviral agents called DNA satellites that require proteins encoded by the helper virus for their replication, movement and encapsidation. Hitherto, most of the single-stranded DNA satellites reported to be associated with members of the family have been associated with monopartite begomoviruses. Cassava mosaic disease is known to be caused by viruses belonging to nine different begomovirus species in the African continent and the Indian subcontinent. In addition to these species, several strains have been recognized that exhibit contrasting phenotypes and infection dynamics. It is established that Sri Lankan cassava mosaic virus can -replicate betasatellites and can cross host barriers. To extend these studies further, we carried out an exhaustive investigation of the ability of geminiviruses, selected to represent all cassava-infecting geminivirus species, to -replicate betasatellites (DNA-) and to interact with alphasatellites (nanovirus-like components; previously called DNA-1). Each of the cassava-infecting geminiviruses showed a contrasting and differential interaction with the DNA satellites, not only in the capacity to interact with these molecules but also in the modulation of symptom phenotypes by the satellites. These observations could be extrapolated to field situations in order to hypothesize about the possibility of acquisition of such DNA satellites currently associated with other begomoviruses. These results call for more detailed analyses of these subviral components and an investigation of their possible interaction with the cassava mosaic disease complex.


Article metrics loading...

Loading full text...

Full text loading...



  1. Arguello-Astorga, G. R., Guevara-Gonzalez, R. G., Herrera-Estrella, L. R. & Rivera-Bustamante, R. F.(1994). Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203, 90–100.[CrossRef] [Google Scholar]
  2. Berrie, L. C., Palmer, K. E., Rybicki, E. P. & Rey, M. E. C.(1998). Molecular characterisation of a distinct South African cassava infecting geminivirus. Arch Virol 143, 2253–2260.[CrossRef] [Google Scholar]
  3. Blawid, R., Van, D. T. & Maiss, E.(2008). Transreplication of a tomato yellow leaf curl Thailand virus DNA-B and replication of a DNAβ component by tomato leaf curl Vietnam virus and tomato yellow leaf curl Vietnam virus. Virus Res 136, 107–117.[CrossRef] [Google Scholar]
  4. Briddon, R. W. & Stanley, J.(2006). Subviral agents associated with plant single-stranded DNA viruses. Virology 344, 198–210.[CrossRef] [Google Scholar]
  5. Briddon, R. W., Mansoor, S., Bedford, I. D., Pinner, M. S., Saunders, K., Stanley, J., Zafar, Y., Malik, K. A. & Markham, P. G.(2001). Identification of DNA components required for induction of cotton leaf curl disease. Virology 285, 234–243.[CrossRef] [Google Scholar]
  6. Briddon, R. W., Bull, S. E., Amin, I., Idris, A. M., Mansoor, S., Bedford, I. D., Dhawan, P., Rishi, N., Siwatch, S. S. & other authors(2003). Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses. Virology 312, 106–121.[CrossRef] [Google Scholar]
  7. Briddon, R. W., Bull, S. E., Amin, I., Mansoor, S., Bedford, I. D., Rishi, N., Siwatch, S. S., Zafar, Y., Abdel-Salam, A. M. & Markham, P. G.(2004). Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus–DNA β complexes. Virology 324, 462–474.[CrossRef] [Google Scholar]
  8. Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M., Zhou, X. & Fauquet, C. M.(2008). Recommendations for the classification and nomenclature of the DNA-β satellites of begomoviruses. Arch Virol 153, 763–781.[CrossRef] [Google Scholar]
  9. Bull, S. E., Tsai, W. S., Briddon, R. W., Markham, P. G., Stanley, J. & Green, S. K.(2004). Diversity of begomovirus DNA β satellites of non-malvaceous plants in east and south east Asia. Arch Virol 149, 1193–1200.[CrossRef] [Google Scholar]
  10. Bull, S. E., Briddon, R. W., Sserubombwe, W. S., Ngugi, K., Markham, P. G. & Stanley, J.(2006). Genetic diversity and phylogeography of cassava mosaic viruses in Kenya. J Gen Virol 87, 3053–3065.[CrossRef] [Google Scholar]
  11. Bull, S. E., Briddon, R. W., Sserubombwe, W. S., Ngugi, K., Markham, P. G. & Stanley, J.(2007). Infectivity, pseudorecombination and mutagenesis of Kenyan cassava mosaic begomoviruses. J Gen Virol 88, 1624–1633.[CrossRef] [Google Scholar]
  12. Campos-Olivas, R., Louis, J. M., Clerot, D., Gronenborn, B. & Gronenborn, A. M.(2002). The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proc Natl Acad Sci U S A 99, 10310–10315.[CrossRef] [Google Scholar]
  13. Collier, R., Fuchs, B., Walter, N., Kevin Lutke, W. & Taylor, C. G.(2005).Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43, 449–457.[CrossRef] [Google Scholar]
  14. Cui, X., Tao, X., Xie, Y., Fauquet, C. M. & Zhou, X.(2004). A DNAβ associated with Tomato yellow leaf curl China virus is required for symptom induction. J Virol 78, 13966–13974.[CrossRef] [Google Scholar]
  15. Cui, X., Li, G., Wang, D., Hu, D. & Zhou, X.(2005). A begomovirus DNAβ-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79, 10764–10775.[CrossRef] [Google Scholar]
  16. Dry, I. B., Krake, L. R., Rigden, J. E. & Rezaian, M. A.(1997). A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci U S A 94, 7088–7093.[CrossRef] [Google Scholar]
  17. Eini, O., Behjatnia, S. A. A., Dogra, S., Dry, I. B., Randles, J. W. & Rezaian, M. A.(2009). Identification of sequence elements regulating promoter activity and replication of a monopartite begomovirus-associated DNA β satellite. J Gen Virol 90, 253–260.[CrossRef] [Google Scholar]
  18. Fauquet, C. & Fargette, D.(1990). African cassava mosaic virus: etiology, epidemiology, and control. Plant Dis 74, 404–411.[CrossRef] [Google Scholar]
  19. Fauquet, C. M., Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M. & Zhou, X.(2008). Geminivirus strain demarcation and nomenclature. Arch Virol 153, 783–821.[CrossRef] [Google Scholar]
  20. Fondong, V. N., Pita, J. S., Rey, M. E., de Kochko, A., Beachy, R. N. & Fauquet, C. M.(2000). Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. J Gen Virol 81, 287–297. [Google Scholar]
  21. Fontes, E. P., Luckow, V. A. & Hanley-Bowdoin, L.(1992). A geminivirus replication protein is a sequence-specific DNA binding protein. Plant Cell 4, 597–608.[CrossRef] [Google Scholar]
  22. Fontes, E. P., Eagle, P. A., Sipe, P. S., Luckow, V. A. & Hanley-Bowdoin, L.(1994). Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J Biol Chem 269, 8459–8465. [Google Scholar]
  23. Gladfelter, H. J., Eagle, P. A., Fontes, E. P., Batts, L. & Hanley-Bowdoin, L.(1997). Two domains of the AL1 protein mediate geminivirus origin recognition. Virology 239, 186–197.[CrossRef] [Google Scholar]
  24. Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S. & Robertson, D.(2000). Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35, 105–140. [Google Scholar]
  25. Idris, A. M., Briddon, R. W., Bull, S. E. & Brown, J. K.(2005). Cotton leaf curl Gezira virus-satellite DNAs represent a divergent, geographically isolated Nile Basin lineage: predictive identification of a satDNA REP-binding motif. Virus Res 109, 19–32.[CrossRef] [Google Scholar]
  26. Klinkenberg, F. A., Ellwood, S. & Stanley, J.(1989). Fate of African cassava mosaic virus coat protein deletion mutants after agroinoculation. J Gen Virol 70, 1837–1844.[CrossRef] [Google Scholar]
  27. Kon, T., Rojas, M. R., Abdourhamane, I. K. & Gilbertson, R. L.(2009). Roles and interactions of begomoviruses and satellite DNAs associated with okra leaf curl disease in Mali, West Africa. J Gen Virol 90, 1001–1013.[CrossRef] [Google Scholar]
  28. Lin, B., Akbar Behjatnia, S. A., Dry, I. B., Randles, J. W. & Rezaian, M. A.(2003). High-affinity Rep-binding is not required for the replication of a geminivirus DNA and its satellite. Virology 305, 353–363.[CrossRef] [Google Scholar]
  29. Liu, L., van Tonder, T., Pietersen, G., Davies, J. W. & Stanley, J.(1997). Molecular characterization of a subgroup I geminivirus from a legume in South Africa. J Gen Virol 78, 2113–2117. [Google Scholar]
  30. Mansoor, S., Khan, S. H., Bashir, A., Saeed, M., Zafar, Y., Malik, K. A., Briddon, R., Stanley, J. & Markham, P. G.(1999). Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259, 190–199.[CrossRef] [Google Scholar]
  31. Mansoor, S., Amin, I., Hussain, M., Zafar, Y., Bull, S., Briddon, R. W. & Markham, P. G.(2001). Association of a disease complex involving a begomovirus, DNA 1 and a distinct DNA β with leaf curl disease of okra in Pakistan. Plant Dis 85, 922 [Google Scholar]
  32. Mansoor, S., Briddon, R. W., Bull, S. E., Bedford, I. D., Bashir, A., Hussain, M., Saeed, M., Zafar, Y., Malik, K. A. & other authors(2003). Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA β. Arch Virol 148, 1969–1986.[CrossRef] [Google Scholar]
  33. Mansoor, S., Zafar, Y. & Briddon, R. W.(2006). Geminivirus disease complexes: the threat is spreading. Trends Plant Sci 11, 209–212.[CrossRef] [Google Scholar]
  34. Maruthi, M. N., Seal, S., Colvin, J., Briddon, R. W. & Bull, S. E.(2004). East African cassava mosaic Zanzibar virus – a recombinant begomovirus species with a mild phenotype. Arch Virol 149, 2365–2377.[CrossRef] [Google Scholar]
  35. Nawaz-ul-Rehman, M. S. & Fauquet, C. M.(2009). Evolution of geminiviruses and their satellites. FEBS Lett 583, 1825–1832.[CrossRef] [Google Scholar]
  36. Nawaz-ul-Rehman, M. S., Mansoor, S., Briddon, R. W. & Fauquet, C. M.(2009). Maintenance of an Old World betasatellite by a New World helper begomovirus and possible rapid adaptation of the betasatellite. J Virol 83, 9347–9355.[CrossRef] [Google Scholar]
  37. Orozco, B. M., Miller, A. B., Settlage, S. B. & Hanley-Bowdoin, L.(1997). Functional domains of a geminivirus replication protein. J Biol Chem 272, 9840–9846.[CrossRef] [Google Scholar]
  38. Patil, B. L. & Dasgupta, I.(2006). Defective interfering DNAs of plant viruses. CRC Crit Rev Plant Sci 25, 47–64.[CrossRef] [Google Scholar]
  39. Patil, B. L. & Fauquet, C. M.(2009). Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol Plant Pathol 10, 685–701.[CrossRef] [Google Scholar]
  40. Patil, B. L., Dutt, N., Briddon, R. W., Bull, S. E., Rothenstein, D., Borah, B. K., Dasgupta, I., Stanley, J. & Jeske, H.(2007). Deletion and recombination events between the DNA-A and DNA-B components of Indian cassava-infecting geminiviruses generate defective molecules in Nicotiana benthamiana. Virus Res 124, 59–67.[CrossRef] [Google Scholar]
  41. Pita, J. S., Fondong, V. N., Sangare, A., Otim-Nape, G. W., Ogwal, S. & Fauquet, C. M.(2001). Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J Gen Virol 82, 655–665. [Google Scholar]
  42. Qazi, J., Amin, I., Mansoor, S., Iqbal, M. J. & Briddon, R. W.(2007). Contribution of the satellite encoded gene βC1 to cotton leaf curl disease symptoms. Virus Res 128, 135–139.[CrossRef] [Google Scholar]
  43. Roossinck, M. J., Sleat, D. & Palukaitis, P.(1992). Satellite RNAs of plant viruses: structures and biological effects. Microbiol Rev 56, 265–279. [Google Scholar]
  44. Rouhibakhsh, A. & Malathi, V. G.(2005). Severe leaf curl disease of cowpea – a new disease of cowpea in northern India caused by Mungbean yellow mosaic India virus and a satellite DNA β. Plant Pathol 54, 259[CrossRef] [Google Scholar]
  45. Saeed, M., Behjatnia, S. A., Mansoor, S., Zafar, Y., Hasnain, S. & Rezaian, M. A.(2005). A single complementary-sense transcript of a geminiviral DNA β satellite is determinant of pathogenicity. Mol Plant Microbe Interact 18, 7–14.[CrossRef] [Google Scholar]
  46. Saeed, M., Zafar, Y., Randles, J. W. & Rezaian, M. A.(2007). A monopartite begomovirus-associated DNA β satellite substitutes for the DNA B of a bipartite begomovirus to permit systemic infection. J Gen Virol 88, 2881–2889.[CrossRef] [Google Scholar]
  47. Sambrook, J. & Russell, D. W.(2001).Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  48. Saunders, K. & Stanley, J.(1999). A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264, 142–152.[CrossRef] [Google Scholar]
  49. Saunders, K., Salim, N., Mali, V. R., Malathi, V. G., Briddon, R., Markham, P. G. & Stanley, J.(2002). Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293, 63–74.[CrossRef] [Google Scholar]
  50. Saunders, K., Bedford, I. D., Yahara, T. & Stanley, J.(2003). Aetiology: the earliest recorded plant virus disease. Nature 422, 831[CrossRef] [Google Scholar]
  51. Saunders, K., Norman, A., Gucciardo, S. & Stanley, J.(2004). The DNA β satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (βC1). Virology 324, 37–47.[CrossRef] [Google Scholar]
  52. Saunders, K., Briddon, R. W. & Stanley, J.(2008). Replication promiscuity of DNA-β satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-β satellite localizes sequences involved in replication. J Gen Virol 89, 3165–3172.[CrossRef] [Google Scholar]
  53. Simon, A. E., Roossinck, M. J. & Havelda, Z.(2004). Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Annu Rev Phytopathol 42, 415–437.[CrossRef] [Google Scholar]
  54. Stanley, J.(2004). Subviral DNAs associated with geminivirus disease complexes. Vet Microbiol 98, 121–129.[CrossRef] [Google Scholar]
  55. Stanley, J., Markham, P. G., Callis, R. J. & Pinner, M. S.(1986). The nucleotide sequence of an infectious clone of the geminivirus beet curly top virus. EMBO J 5, 1761–1767. [Google Scholar]
  56. Turnage, M. A., Muangsan, N., Peele, C. G. & Robertson, D.(2002). Geminivirus-based vectors for gene silencing in Arabidopsis. Plant J 30, 107–114.[CrossRef] [Google Scholar]
  57. van Engelen, F. A., Molthoff, J. W., Conner, A. J., Nap, J. P., Pereira, A. & Stiekema, W. J.(1995). pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 4, 288–290.[CrossRef] [Google Scholar]
  58. Vega-Rocha, S., Gronenborn, B., Gronenborn, A. M. & Campos-Olivas, R.(2007). Solution structure of the endonuclease domain from the master replication initiator protein of the nanovirus faba bean necrotic yellows virus and comparison with the corresponding geminivirus and circovirus structures. Biochemistry 46, 6201–6212.[CrossRef] [Google Scholar]
  59. von Arnim, A. & Stanley, J.(1992). Determinants of tomato golden mosaic virus symptom development located on DNA B. Virology 186, 286–293.[CrossRef] [Google Scholar]
  60. Wu, P. J. & Zhou, X. P.(2005). Interaction between a nanovirus-like component and the tobacco curly shoot virus/satellite complex. Acta Biochim Biophys Sin (Shanghai) 37, 25–31.[CrossRef] [Google Scholar]
  61. Wydro, M., Kozubek, E. & Lehmann, P.(2006). Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochim Pol 53, 289–298. [Google Scholar]
  62. Yang, J. Y., Iwasaki, M., Machida, C., Machida, Y., Zhou, X. & Chua, N. H.(2008).βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev 22, 2564–2577.[CrossRef] [Google Scholar]
  63. Zhou, X., Xie, Y., Tao, X., Zhang, Z., Li, Z. & Fauquet, C. M.(2003). Characterization of DNAβ associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J Gen Virol 84, 237–247.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 7, pp. 1871–1882

Typical stem-curling phenotypes obtained when DNA- is co-inoculated with ACMV genomic components at 4 weeks post-inoculation.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error