1887

Abstract

Many of the 51 serotypes of adenovirus have been associated with clinically relevant infection. Adenovirus can disseminate rapidly in patients with a compromised immune system, such as that which occurs secondary to haematopoietic progenitor-cell transplantation. The higher rate of infection in recipients of T cell-depleted grafts and in those undergoing T cell-targeted treatment during graft versus host disease demonstrates the importance of a T-cell response in preventing disseminated infection. Studies have shown that the memory response to adenovirus is directed primarily to the hexon protein and is dominated by CD4 T cells, probably due to the ability of the virus to block its presentation on HLA class I antigens. We have developed an approach to expand adenovirus-specific T cells using a pool of overlapping pentadecapeptides derived from selected conserved regions of hexon. We characterized responses to identify the peptides that are recognized, the responding T-cell subsets and their HLA restriction. Of eight lines that were characterized extensively, seven included both CD4 and CD8 T cells and each recognized between two and eight unique peptide sequences. By focusing the response on the conserved sequences of hexon, the cell lines are likely to recognize most of the serotypes responsible for clinically relevant disease. The 15 aa peptides used to prime the responses are more likely than whole virus or longer peptides to expand the less frequent CD8 memory subset. Lines prepared by using our method may be more effective in adoptive immunotherapy protocols designed to prevent or treat disseminated adenovirus infections in high-risk patients.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.019471-0
2010-06-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/6/1577.html?itemId=/content/journal/jgv/10.1099/vir.0.019471-0&mimeType=html&fmt=ahah

References

  1. Appay, V., Douek, D. C. & Price, D. A. ( 2008; ). CD8+ T cell efficacy in vaccination and disease. Nat Med 14, 623–628.[CrossRef]
    [Google Scholar]
  2. Bihl, F., Frahm, N., Di Giammarino, L., Sidney, J., John, M., Yusim, K., Woodberry, T., Sango, K., Hewitt, H. S. & other authors ( 2006; ). Impact of HLA-B alleles, epitope binding affinity, functional avidity, and viral coinfection on the immunodominance of virus-specific CTL responses. J Immunol 176, 4094–4101.[CrossRef]
    [Google Scholar]
  3. Burgert, H. G. & Kvist, S. ( 1985; ). An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41, 987–997.[CrossRef]
    [Google Scholar]
  4. Chakrabarti, S., Mautner, V., Osman, H., Collingham, K. E., Fegan, C. D., Klapper, P. E., Moss, P. A. & Milligan, D. W. ( 2002; ). Adenovirus infections following allogeneic stem cell transplantation: incidence and outcome in relation to graft manipulation, immunosuppression, and immune recovery. Blood 100, 1619–1627.[CrossRef]
    [Google Scholar]
  5. Chatziandreou, I., Gilmour, K. C., McNicol, A. M., Costabile, M., Sinclair, J., Cubitt, D., Campbell, J. D., Kinnon, C., Qasim, W. & Gaspar, H. B. ( 2007; ). Capture and generation of adenovirus specific T cells for adoptive immunotherapy. Br J Haematol 136, 117–126.[CrossRef]
    [Google Scholar]
  6. Chicz, R. M., Urban, R. G., Gorga, J. C., Vignali, D. A., Lane, W. S. & Strominger, J. L. ( 1993; ). Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 178, 27–47.[CrossRef]
    [Google Scholar]
  7. Comoli, P., Schilham, M. W., Basso, S., van Vreeswijk, T., Bernardo, M. E., Maccario, R., van Tol, M. J., Locatelli, F. & Veltrop-Duits, L. A. ( 2008; ). T-cell lines specific for peptides of adenovirus hexon protein and devoid of alloreactivity against recipient cells can be obtained from HLA-haploidentical donors. J Immunother 31, 529–536.[CrossRef]
    [Google Scholar]
  8. Ebner, K., Pinsker, W. & Lion, T. ( 2005; ). Comparative sequence analysis of the hexon gene in the entire spectrum of human adenovirus serotypes: phylogenetic, taxonomic, and clinical implications. J Virol 79, 12635–12642.[CrossRef]
    [Google Scholar]
  9. Feuchtinger, T., Lang, P., Hamprecht, K., Schumm, M., Greil, J., Jahn, G., Niethammer, D. & Einsele, H. ( 2004; ). Isolation and expansion of human adenovirus-specific CD4+ and CD8+ T cells according to IFN-γ secretion for adjuvant immunotherapy. Exp Hematol 32, 282–289.[CrossRef]
    [Google Scholar]
  10. Feuchtinger, T., Matthes-Martin, S., Richard, C., Lion, T., Fuhrer, M., Hamprecht, K., Handgretinger, R., Peters, C., Schuster, F. R. & other authors ( 2006; ). Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 134, 64–76.[CrossRef]
    [Google Scholar]
  11. Feuchtinger, T., Lang, P. & Handgretinger, R. ( 2007; ). Adenovirus infection after allogeneic stem cell transplantation. Leuk Lymphoma 48, 244–255.[CrossRef]
    [Google Scholar]
  12. Feuchtinger, T., Richard, C., Joachim, S., Scheible, M. H., Schumm, M., Hamprecht, K., Martin, D., Jahn, G., Handgretinger, R. & Lang, P. ( 2008; ). Clinical grade generation of hexon-specific T cells for adoptive T-cell transfer as a treatment of adenovirus infection after allogeneic stem cell transplantation. J Immunother 31, 199–206.[CrossRef]
    [Google Scholar]
  13. Flomenberg, P., Babbitt, J., Drobyski, W. R., Ash, R. C., Carrigan, D. R., Sedmak, G. V., McAuliffe, T., Camitta, B., Horowitz, M. M. & other authors ( 1994; ). Increasing incidence of adenovirus disease in bone marrow transplant recipients. J Infect Dis 169, 775–781.[CrossRef]
    [Google Scholar]
  14. Germain, R. N. & Hendrix, L. R. ( 1991; ). MHC class II structure, occupancy and surface expression determined by post-endoplasmic reticulum antigen binding. Nature 353, 134–139.[CrossRef]
    [Google Scholar]
  15. Hanley, P. J., Cruz, C. R., Savoldo, B., Leen, A. M., Stanojevic, M., Khalil, M., Decker, W., Molldrem, J. J., Liu, H. & other authors ( 2009; ). Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood 114, 1958–1967.[CrossRef]
    [Google Scholar]
  16. Heemskerk, B., Veltrop-Duits, L. A., van Vreeswijk, T., ten Dam, M. M., Heidt, S., Toes, R. E., van Tol, M. J. & Schilham, M. W. ( 2003; ). Extensive cross-reactivity of CD4+ adenovirus-specific T cells: implications for immunotherapy and gene therapy. J Virol 77, 6562–6566.[CrossRef]
    [Google Scholar]
  17. Heemskerk, B., van Vreeswijk, T., Veltrop-Duits, L. A., Sombroek, C. C., Franken, K., Verhoosel, R. M., Hiemstra, P. S., van Leeuwen, D., Ressing, M. E. & other authors ( 2006; ). Adenovirus-specific CD4+ T cell clones recognizing endogenous antigen inhibit viral replication in vitro through cognate interaction. J Immunol 177, 8851–8859.[CrossRef]
    [Google Scholar]
  18. Joshi, A., Tang, J., Kuzma, M., Wagner, J., Mookerjee, B., Filicko, J., Carabasi, M., Flomenberg, N. & Flomenberg, P. ( 2009; ). Adenovirus DNA polymerase is recognized by human CD8+ T cells. J Gen Virol 90, 84–94.[CrossRef]
    [Google Scholar]
  19. Koehne, G., Smith, K. M., Ferguson, T. L., Williams, R. Y., Heller, G., Pamer, E. G., Dupont, B. & O'Reilly, R. J. ( 2002; ). Quantitation, selection, and functional characterization of Epstein–Barr virus-specific and alloreactive T cells detected by intracellular interferon-γ production and growth of cytotoxic precursors. Blood 99, 1730–1740.[CrossRef]
    [Google Scholar]
  20. La Rosa, A. M., Champlin, R. E., Mirza, N., Gajewski, J., Giralt, S., Rolston, K. V., Raad, I., Jacobson, K., Kontoyiannis, D. & other authors ( 2001; ). Adenovirus infections in adult recipients of blood and marrow transplants. Clin Infect Dis 32, 871–876.[CrossRef]
    [Google Scholar]
  21. Leen, A. M. & Heslop, H. E. ( 2008; ). Cytotoxic T lymphocytes as immune-therapy in haematological practice. Br J Haematol 143, 169–179.[CrossRef]
    [Google Scholar]
  22. Leen, A. M., Sili, U., Savoldo, B., Jewell, A. M., Piedra, P. A., Brenner, M. K. & Rooney, C. M. ( 2004a; ). Fiber-modified adenoviruses generate subgroup cross-reactive, adenovirus-specific cytotoxic T lymphocytes for therapeutic applications. Blood 103, 1011–1019.
    [Google Scholar]
  23. Leen, A. M., Sili, U., Vanin, E. F., Jewell, A. M., Xie, W., Vignali, D., Piedra, P. A., Brenner, M. K. & Rooney, C. M. ( 2004b; ). Conserved CTL epitopes on the adenovirus hexon protein expand subgroup cross-reactive and subgroup-specific CD8+ T cells. Blood 104, 2432–2440.[CrossRef]
    [Google Scholar]
  24. Leen, A. M., Myers, G. D., Sili, U., Huls, M. H., Weiss, H., Leung, K. S., Carrum, G., Krance, R. A., Chang, C. C. & other authors ( 2006; ). Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 12, 1160–1166.[CrossRef]
    [Google Scholar]
  25. Leen, A. M., Christin, A., Khalil, M., Weiss, H., Gee, A. P., Brenner, M. K., Heslop, H. E., Rooney, C. M. & Bollard, C. M. ( 2008; ). Identification of hexon-specific CD4 and CD8 T-cell epitopes for vaccine and immunotherapy. J Virol 82, 546–554.[CrossRef]
    [Google Scholar]
  26. Leen, A. M., Christin, A., Myers, G. D., Liu, H., Cruz, C. R., Hanley, P. J., Kennedy-Nasser, A. A., Leung, K. S., Gee, A. P. & other authors ( 2009; ). Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein–Barr virus infections after haploidentical and matched unrelated stem cell transplant. Blood 114, 4283–4293.[CrossRef]
    [Google Scholar]
  27. Lenaerts, L., De Clercq, E. & Naesens, L. ( 2008; ). Clinical features and treatment of adenovirus infections. Rev Med Virol 18, 357–374.[CrossRef]
    [Google Scholar]
  28. Maecker, H. T., Dunn, H. S., Suni, M. A., Khatamzas, E., Pitcher, C. J., Bunde, T., Persaud, N., Trigona, W., Fu, T. M. & other authors ( 2001; ). Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J Immunol Methods 255, 27–40.[CrossRef]
    [Google Scholar]
  29. McLaughlin-Taylor, E., Pande, H., Forman, S. J., Tanamachi, B., Li, C. R., Zaia, J. A., Greenberg, P. D. & Riddell, S. R. ( 1994; ). Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J Med Virol 43, 103–110.[CrossRef]
    [Google Scholar]
  30. Murray, R. J., Kurilla, M. G., Brooks, J. M., Thomas, W. A., Rowe, M., Kieff, E. & Rickinson, A. B. ( 1992; ). Identification of target antigens for the human cytotoxic T cell response to Epstein–Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med 176, 157–168.[CrossRef]
    [Google Scholar]
  31. Neofytos, D., Ojha, A., Mookerjee, B., Wagner, J., Filicko, J., Ferber, A., Dessain, S., Grosso, D., Brunner, J. & other authors ( 2007; ). Treatment of adenovirus disease in stem cell transplant recipients with cidofovir. Biol Blood Marrow Transplant 13, 74–81.
    [Google Scholar]
  32. Olive, M., Eisenlohr, L. C. & Flomenberg, P. ( 2001; ). Quantitative analysis of adenovirus-specific CD4+ T-cell responses from healthy adults. Viral Immunol 14, 403–413.[CrossRef]
    [Google Scholar]
  33. Olive, M., Eisenlohr, L., Flomenberg, N., Hsu, S. & Flomenberg, P. ( 2002; ). The adenovirus capsid protein hexon contains a highly conserved human CD4+ T-cell epitope. Hum Gene Ther 13, 1167–1178.[CrossRef]
    [Google Scholar]
  34. Onion, D., Crompton, L. J., Milligan, D. W., Moss, P. A., Lee, S. P. & Mautner, V. ( 2007; ). The CD4+ T-cell response to adenovirus is focused against conserved residues within the hexon protein. J Gen Virol 88, 2417–2425.[CrossRef]
    [Google Scholar]
  35. Ramadan, G., Konings, S., Kurup, V. P. & Keever-Taylor, C. A. ( 2004; ). Generation of Aspergillus- and CMV- specific T-cell responses using autologous fast DC. Cytotherapy 6, 223–234.[CrossRef]
    [Google Scholar]
  36. Ramadan, G., Davies, B., Kurup, V. P. & Keever-Taylor, C. A. ( 2005a; ). Generation of cytotoxic T cell responses directed to human leucocyte antigen class I restricted epitopes from the Aspergillus f16 allergen. Clin Exp Immunol 140, 81–91.[CrossRef]
    [Google Scholar]
  37. Ramadan, G., Davies, B., Kurup, V. P. & Keever-Taylor, C. A. ( 2005b; ). Generation of Th1 T cell responses directed to a HLA class II restricted epitope from the Aspergillus f16 allergen. Clin Exp Immunol 139, 257–267.[CrossRef]
    [Google Scholar]
  38. Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanovic, S. ( 1999; ). syfpeithi: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219.[CrossRef]
    [Google Scholar]
  39. Rooney, C. M., Smith, C. A., Ng, C. Y., Loftin, S., Li, C., Krance, R. A., Brenner, M. K. & Heslop, H. E. ( 1995; ). Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr-virus-related lymphoproliferation. Lancet 345, 9–13.[CrossRef]
    [Google Scholar]
  40. Smith, C. A., Woodruff, L. S., Kitchingman, G. R. & Rooney, C. M. ( 1996; ). Adenovirus-pulsed dendritic cells stimulate human virus-specific T-cell responses in vitro. J Virol 70, 6733–6740.
    [Google Scholar]
  41. Sumida, S. M., Truitt, D. M., Kishko, M. G., Arthur, J. C., Jackson, S. S., Gorgone, D. A., Lifton, M. A., Koudstaal, W., Pau, M. G. & other authors ( 2004; ). Neutralizing antibodies and CD8+ T lymphocytes both contribute to immunity to adenovirus serotype 5 vaccine vectors. J Virol 78, 2666–2673.[CrossRef]
    [Google Scholar]
  42. Symeonidis, N., Jakubowski, A., Pierre-Louis, S., Jaffe, D., Pamer, E., Sepkowitz, K., O'Reilly, R. J. & Papanicolaou, G. A. ( 2007; ). Invasive adenoviral infections in T-cell-depleted allogeneic hematopoietic stem cell transplantation: high mortality in the era of cidofovir. Transpl Infect Dis 9, 108–113.[CrossRef]
    [Google Scholar]
  43. Tang, J., Olive, M., Champagne, K., Flomenberg, N., Eisenlohr, L., Hsu, S. & Flomenberg, P. ( 2004; ). Adenovirus hexon T-cell epitope is recognized by most adults and is restricted by HLA DP4, the most common class II allele. Gene Ther 11, 1408–1415.[CrossRef]
    [Google Scholar]
  44. Tang, J., Olive, M., Pulmanausahakul, R., Schnell, M., Flomenberg, N., Eisenlohr, L. & Flomenberg, P. ( 2006; ). Human CD8+ cytotoxic T cell responses to adenovirus capsid proteins. Virology 350, 312–322.[CrossRef]
    [Google Scholar]
  45. Trivedi, D., Williams, R. Y., O'Reilly, R. J. & Koehne, G. ( 2005; ). Generation of CMV-specific T lymphocytes using protein-spanning pools of pp65-derived overlapping pentadecapeptides for adoptive immunotherapy. Blood 105, 2793–2801.[CrossRef]
    [Google Scholar]
  46. Veltrop-Duits, L. A., Heemskerk, B., Sombroek, C. C., van Vreeswijk, T., Gubbels, S., Toes, R. E., Melief, C. J., Franken, K. L., Havenga, M. & other authors ( 2006; ). Human CD4+ T cells stimulated by conserved adenovirus 5 hexon peptides recognize cells infected with different species of human adenovirus. Eur J Immunol 36, 2410–2423.[CrossRef]
    [Google Scholar]
  47. Walter, E. A., Greenberg, P. D., Gilbert, M. J., Finch, R. J., Watanabe, K. S., Thomas, E. D. & Riddell, S. R. ( 1995; ). Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333, 1038–1044.[CrossRef]
    [Google Scholar]
  48. Yewdell, J. W. & Bennink, J. R. ( 1992; ). Cell biology of antigen processing and presentation to major histocompatibility complex class I molecule-restricted T lymphocytes. Adv Immunol 52, 1–123.
    [Google Scholar]
  49. Yotnda, P., Onishi, H., Heslop, H. E., Shayakhmetov, D., Lieber, A., Brenner, M. & Davis, A. ( 2001; ). Efficient infection of primitive hematopoietic stem cells by modified adenovirus. Gene Ther 8, 930–937.[CrossRef]
    [Google Scholar]
  50. Zhu, F., Ramadan, G., Davies, B., Margolis, D. A. & Keever-Taylor, C. A. ( 2007; ). Stimulation by means of dendritic cells followed by Epstein–Barr virus-transformed B cells as antigen-presenting cells is more efficient than dendritic cells alone in inducing Aspergillus f16-specific cytotoxic T cell responses. Clin Exp Immunol 151, 284–296.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.019471-0
Loading
/content/journal/jgv/10.1099/vir.0.019471-0
Loading

Data & Media loading...

Supplements

Research donor HLA typing [ PDF] (44 KB)

PDF

[ Single PDF of figures] (215 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error