1887

Abstract

Although there is currently no effective treatment for prion diseases, significant advances have been made in suppressing its progress, using antibodies that block the conversion of PrP into PrP. In order to be effective in treating individuals that have prion diseases, antibodies must be capable of arresting disease in its late stages. This requires the development of antibodies with higher affinity for PrP and systems for effective translocation of antibodies across the blood–brain barrier in order to achieve high concentrations of inhibitor at the site of protein replication. An additional advantage is the ability of these antibodies to access the cytosol of affected cells. To this end, we have generated PrP-specific antibodies (known as PrioV) by immunization of camels with murine scrapie material adsorbed to immunomagnetic beads. The PrioV antibodies display a range of specificities with some recognizing the PrP proteinase K-resistant fragment, others specific for PrP and a number with dual binding specificity. Independent of their PrP conformation specificity, one of the PrioV antibodies (PrioV3) was shown to bind PrP in the cytosol of neuroblastoma cells. In marked contrast, conventional anti-PrP antibodies produced in mouse against similar target antigen were unable to cross the neuronal plasma membrane and instead formed a ring around the cells. The PrioV anti-PrP antibodies could prove to be a valuable tool for the neutralization/clearance of PrP in intracellular compartments of affected neurons and could potentially have wider applicability for the treatment of so-called protein-misfolding diseases.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.018754-0
2010-08-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/8/2121.html?itemId=/content/journal/jgv/10.1099/vir.0.018754-0&mimeType=html&fmt=ahah

References

  1. Barry R. A., Vincent M. T., Kent S. B., Hood L. E., Prusiner S. B. 1988; Characterization of prion proteins with monospecific antisera to synthetic peptides. J Immunol 140:1188–1193
    [Google Scholar]
  2. Beringue V., Mallinson G., Kaisar M., Tayebi M., Sattar Z., Jackson G., Anstee D., Collinge J., Hawke S. 2003; Regional heterogeneity of cellular prion protein isoforms in the mouse brain. Brain 126:2065–2073
    [Google Scholar]
  3. Beringue V., Vilette D., Mallinson G., Archer F., Kaisar M., Tayebi M., Jackson G. S., Clarke A. R., Laude H. other authors 2004; PrPSc binding antibodies are potent inhibitors of prion replication in cell lines. J Biol Chem 279:39671–39676
    [Google Scholar]
  4. Bessen R. A., Marsh R. F. 1992a; Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol 66:2096–2101
    [Google Scholar]
  5. Bessen R. A., Marsh R. F. 1992b; Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J Gen Virol 73:329–334
    [Google Scholar]
  6. Borchelt D. R., Taraboulos A., Prusiner S. B. 1992; Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem 267:16188–16199
    [Google Scholar]
  7. Campana V., Zentilin L., Mirabile I., Kranjc A., Casanova P., Giacca M., Prusiner S. B., Legname G., Zurzolo C. 2009; Development of antibody fragments for immunotherapy of prion diseases. Biochem J 418:507–515
    [Google Scholar]
  8. Cardinale A., Filesi I., Vetrugno V., Pocchiari M., Sy M. S., Biocca S. 2005; Trapping prion protein in the endoplasmic reticulum impairs PrPC maturation and prevents PrPSc accumulation. J Biol Chem 280:685–694
    [Google Scholar]
  9. Conrath K. E., Lauwereys M., Galleni M., Matagne A., Frere J. M., Kinne J., Wyns L., Muyldermans S. 2001; Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the Camelidae . Antimicrob Agents Chemother 45:2807–2812
    [Google Scholar]
  10. Curin Serbec V., Bresjanac M., Popovic M., Pretnar Hartman K., Galvani V., Rupreht R., Cernilec M., Vranac T., Hafner I., Jerala R. 2004; Monoclonal antibody against a peptide of human prion protein discriminates between Creutzfeldt–Jacob's disease-affected and normal brain tissue. J Biol Chem 279:3694–3698
    [Google Scholar]
  11. Decanniere K., Desmyter A., Lauwereys M., Ghahroudi M. A., Muyldermans S., Wyns L. 1999; A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops. Structure 7:361–370
    [Google Scholar]
  12. Donofrio G., Heppner F. L., Polymenidou M., Musahl C., Aguzzi A. 2005; Paracrine inhibition of prion propagation by anti-PrP single-chain Fv miniantibodies. J Virol 79:8330–8338
    [Google Scholar]
  13. Dumoulin M., Conrath K., Van Meirhaeghe A., Meersman F., Heremans K., Frenken L. G., Muyldermans S., Wyns L., Matagne A. 2002; Single-domain antibody fragments with high conformational stability. Protein Sci 11:500–515
    [Google Scholar]
  14. Enari M., Flechsig E., Weissmann C. 2001; Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc Natl Acad Sci U S A 98:9295–9299
    [Google Scholar]
  15. Genoud N., Ott D., Braun N., Prinz M., Schwarz P., Suter U., Trono D., Aguzzi A. 2008; Antiprion prophylaxis by gene transfer of a soluble prion antagonist. Am J Pathol 172:1287–1296
    [Google Scholar]
  16. Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Songa E. B., Bendahman N., Hamers R. 1993; Naturally occurring antibodies devoid of light chains. Nature 363:446–448
    [Google Scholar]
  17. Harmeyer S., Pfaff E., Groschup M. H. 1998; Synthetic peptide vaccines yield monoclonal antibodies to cellular and pathological prion proteins of ruminants. J Gen Virol 79:937–945
    [Google Scholar]
  18. Hill A. F., Joiner S., Beck J. A., Campbell T. A., Dickinson A., Poulter M., Wadsworth J. D., Collinge J. 2006; Distinct glycoform ratios of protease resistant prion protein associated with PRNP point mutations. Brain 129:676–685
    [Google Scholar]
  19. Jackson G. S., Hill A. F., Joseph C., Hosszu L., Power A., Waltho J. P., Clarke A. R., Collinge J. 1999; Multiple folding pathways for heterologously expressed human prion protein. Biochim Biophys Acta 14311–13
    [Google Scholar]
  20. Kascsak R. J., Rubenstein R., Merz P. A., Tonna-DeMasi M., Fersko R., Carp R. I., Wisniewski H. M., Diringer H. 1987; Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. J Virol 61:3688–3693
    [Google Scholar]
  21. Khalili-Shirazi A., Quaratino S., Londei M., Summers L., Tayebi M., Clarke A. R., Hawke S. H., Jackson G. S., Collinge J. 2005; Protein conformation significantly influences immune responses to prion protein. J Immunol 174:3256–3263
    [Google Scholar]
  22. Korth C., Streit P., Oesch B. 1999; Monoclonal antibodies specific for the native, disease-associated isoform of the prion protein. Methods Enzymol 309:106–122
    [Google Scholar]
  23. Krasemann S., Groschup M. H., Harmeyer S., Hunsmann G., Bodemer W. 1996; Generation of monoclonal antibodies against human prion proteins in PrP0/0 mice. Mol Med 2:725–734
    [Google Scholar]
  24. Krasemann S., Jurgens T., Bodemer W. 1999; Generation of monoclonal antibodies against prion proteins with an unconventional nucleic acid-based immunization strategy. J Biotechnol 73:119–129
    [Google Scholar]
  25. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  26. Muyldermans S. 2001; Single domain camel antibodies: current status. J Biotechnol 74:277–302
    [Google Scholar]
  27. Nishimura T., Sakudo A., Xue G., Ikuta K., Yukawa M., Sugiura K., Onodera T. 2008; Establishment of a new glial cell line from hippocampus of prion protein gene-deficient mice. Biochem Biophys Res Commun 377:1047–1050
    [Google Scholar]
  28. Oesch B., Westaway D., Walchli M., McKinley M. P., Kent S. B., Aebersold R., Barry R. A., Tempst P., Teplow D. B. other authors 1985; A cellular gene encodes scrapie PrP 27–30 protein. Cell 40:735–746
    [Google Scholar]
  29. Paramithiotis E., Pinard M., Lawton T., LaBoissiere S., Leathers V. L., Zou W. Q., Estey L. A., Lamontagne J., Lehto M. T. other authors 2003; A prion protein epitope selective for the pathologically misfolded conformation. Nat Med 9:893–899
    [Google Scholar]
  30. Peretz D., Williamson R. A., Kaneko K., Vergara J., Leclerc E., Schmitt-Ulms G., Mehlhorn I. R., Legname G., Wormald M. R. other authors 2001; Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412:739–743
    [Google Scholar]
  31. Pilon J., Loiacono C., Okeson D., Lund S., Vercauteren K., Rhyan J., Miller L. 2007; Anti-prion activity generated by a novel vaccine formulation. Neurosci Lett 429:161–164
    [Google Scholar]
  32. Polymenidou M., Moos R., Scott M., Sigurdson C., Shi Y. Z., Yajima B., Hafner-Bratkovic I., Jerala R., Hornemann S. other authors 2008; The POM monoclonals: a comprehensive set of antibodies to non-overlapping prion protein epitopes. PLoS One 3:e3872
    [Google Scholar]
  33. Serban D., Taraboulos A., DeArmond S. J., Prusiner S. B. 1990; Rapid detection of Creutzfeldt–Jakob disease and scrapie prion proteins. Neurology 40:110–117
    [Google Scholar]
  34. Song C. H., Furuoka H., Kim C. L., Ogino M., Suzuki A., Hasebe R., Horiuchi M. 2008; Effect of intraventricular infusion of anti-prion protein monoclonal antibodies on disease progression in prion-infected mice. J Gen Virol 89:1533–1544
    [Google Scholar]
  35. Tayebi M., Enever P., Sattar Z., Collinge J., Hawke S. 2004; Disease-associated prion protein elicits immunoglobulin M responses in vivo . Mol Med 10:104–111
    [Google Scholar]
  36. Tayebi M., Collinge J., Hawke S. 2009; Unswitched immunoglobulin M response prolongs mouse survival in prion disease. J Gen Virol 90:777–782
    [Google Scholar]
  37. Thackray A. M., Hopkins L., Klein M. A., Bujdoso R. 2007; Mouse-adapted ovine scrapie prion strains are characterized by different conformers of PrPSc . J Virol 81:12119–12127
    [Google Scholar]
  38. Vetrugno V., Cardinale A., Filesi I., Mattei S., Sy M. S., Pocchiari M., Biocca S. 2005; KDEL-tagged anti-prion intrabodies impair PrP lysosomal degradation and inhibit scrapie infectivity. Biochem Biophys Res Commun 338:1791–1797
    [Google Scholar]
  39. Vorberg I., Priola S. A. 2002; Molecular basis of scrapie strain glycoform variation. J Biol Chem 277:36775–36781
    [Google Scholar]
  40. Wadsworth J. D., Hill A. F., Beck J. A., Collinge J. 2003; Molecular and clinical classification of human prion disease. Br Med Bull 66:241–254
    [Google Scholar]
  41. White A. R., Enever P., Tayebi M., Mushens R., Linehan J., Brandner S., Anstee D., Collinge J., Hawke S. 2003; Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422:80–83
    [Google Scholar]
  42. Williamson R. A., Peretz D., Smorodinsky N., Bastidas R., Serban H., Mehlhorn I., DeArmond S. J., Prusiner S. B., Burton D. R. 1996; Circumventing tolerance to generate autologous monoclonal antibodies to the prion protein. Proc Natl Acad Sci U S A 93:7279–7282
    [Google Scholar]
  43. Williamson R. A., Peretz D., Pinilla C., Ball H., Bastidas R. B., Rozenshteyn R., Houghten R. A., Prusiner S. B., Burton D. R. 1998; Mapping the prion protein using recombinant antibodies. J Virol 72:9413–9418
    [Google Scholar]
  44. Wuertzer C. A., Sullivan M. A., Qiu X., Federoff H. J. 2008; CNS delivery of vectored prion-specific single-chain antibodies delays disease onset. Mol Ther 16:481–486
    [Google Scholar]
  45. Zuber C., Knackmuss S., Rey C., Reusch U., Rottgen P., Frohlich T., Arnold G. J., Pace C., Mitteregger G. & other authors (2008a). Single chain Fv antibodies directed against the 37 kDa/67 kDa laminin receptor as therapeutic tools in prion diseases. Mol Immunol 45:144–151
    [Google Scholar]
  46. Zuber C., Mitteregger G., Schuhmann N., Rey C., Knackmuss S., Rupprecht W., Reusch U., Pace C., Little M. other authors 2008b; Delivery of single-chain antibodies (scFvs) directed against the 37/67 kDa laminin receptor into mice via recombinant adeno-associated viral vectors for prion disease gene therapy. J Gen Virol 89:2055–2061
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.018754-0
Loading
/content/journal/jgv/10.1099/vir.0.018754-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error