%0 Journal Article %A Halasz, Peter %A Holloway, Gavan %A Coulson, Barbara S. %T Death mechanisms in epithelial cells following rotavirus infection, exposure to inactivated rotavirus or genome transfection %D 2010 %J Journal of General Virology, %V 91 %N 8 %P 2007-2018 %@ 1465-2099 %R https://doi.org/10.1099/vir.0.018275-0 %I Microbiology Society, %X Intestinal epithelial cell death following rotavirus infection is associated with villus atrophy and gastroenteritis. Roles for both apoptosis and necrosis in cytocidal activity within rotavirus-infected epithelial cells have been proposed. Additionally, inactivated rotavirus has been reported to induce diarrhoea in infant mice. We further examined the death mechanisms induced in epithelial cell lines following rotavirus infection or inactivated rotavirus exposure. Monolayer integrity changes in MA104, HT-29 and partially differentiated Caco-2 cells following inactivated rotavirus exposure or RRV or CRW-8 rotavirus infection paralleled cell metabolic activity and viability reductions. MA104 cell exposure to rotavirus dsRNA also altered monolayer integrity. Inactivated rotaviruses induced delayed cell function losses that were unrelated to apoptosis. Phosphatidylserine externalization, indicating early apoptosis, occurred in MA104 and HT-29 but not in partially differentiated Caco-2 cells by 11 h after infection. Rotavirus activation of phosphatidylinositol 3-kinase partially protected MA104 and HT-29 cells from early apoptosis. In contrast, activation of the stress-activated protein kinase JNK by rotavirus did not influence apoptosis induction in these cells. RRV infection produced DNA fragmentation, indicating late-stage apoptosis, in fully differentiated Caco-2 cells only. These studies show that the apoptosis initiation and cell death mechanism induced by rotavirus infection depend on cell type and degree of differentiation. Early stage apoptosis resulting from rotavirus infection is probably counter-balanced by virus-induced phosphatidylinositol 3-kinase activation. The ability of inactivated rotaviruses and rotavirus dsRNA to perturb monolayer integrity supports a potential role for these rotavirus components in disease pathogenesis. %U https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.018275-0