1887

Abstract

Intestinal epithelial cell death following rotavirus infection is associated with villus atrophy and gastroenteritis. Roles for both apoptosis and necrosis in cytocidal activity within rotavirus-infected epithelial cells have been proposed. Additionally, inactivated rotavirus has been reported to induce diarrhoea in infant mice. We further examined the death mechanisms induced in epithelial cell lines following rotavirus infection or inactivated rotavirus exposure. Monolayer integrity changes in MA104, HT-29 and partially differentiated Caco-2 cells following inactivated rotavirus exposure or RRV or CRW-8 rotavirus infection paralleled cell metabolic activity and viability reductions. MA104 cell exposure to rotavirus dsRNA also altered monolayer integrity. Inactivated rotaviruses induced delayed cell function losses that were unrelated to apoptosis. Phosphatidylserine externalization, indicating early apoptosis, occurred in MA104 and HT-29 but not in partially differentiated Caco-2 cells by 11 h after infection. Rotavirus activation of phosphatidylinositol 3-kinase partially protected MA104 and HT-29 cells from early apoptosis. In contrast, activation of the stress-activated protein kinase JNK by rotavirus did not influence apoptosis induction in these cells. RRV infection produced DNA fragmentation, indicating late-stage apoptosis, in fully differentiated Caco-2 cells only. These studies show that the apoptosis initiation and cell death mechanism induced by rotavirus infection depend on cell type and degree of differentiation. Early stage apoptosis resulting from rotavirus infection is probably counter-balanced by virus-induced phosphatidylinositol 3-kinase activation. The ability of inactivated rotaviruses and rotavirus dsRNA to perturb monolayer integrity supports a potential role for these rotavirus components in disease pathogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.018275-0
2010-08-01
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/8/2007.html?itemId=/content/journal/jgv/10.1099/vir.0.018275-0&mimeType=html&fmt=ahah

References

  1. Altenburg B. C., Graham D. Y., Estes M. K.. 1980; Ultrastructural study of rotavirus replication in cultured cells. J Gen Virol46:75–85
    [Google Scholar]
  2. Balasubramanian K., Schroit A. J.. 2003; Aminophospholipid asymmetry: a matter of life and death. Annu Rev Physiol65:701–734
    [Google Scholar]
  3. Ball J. M., Tian P., Zeng C. Q., Morris A. P., Estes M. K.. 1996; Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science272:101–104
    [Google Scholar]
  4. Berkova Z., Crawford S. E., Trugnan G., Yoshimori T., Morris A. P., Estes M. K.. 2006; Rotavirus NSP4 induces a novel vesicular compartment regulated by calcium and associated with viroplasms. J Virol80:6061–6071
    [Google Scholar]
  5. Bishop R. F., Davidson G. P., Holmes I. H., Ruck B. J.. 1973; Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet2:1281–1283
    [Google Scholar]
  6. Boshuizen J. A., Reimerink J. H., Korteland-van Male A. M., van Ham V. J., Koopmans M. P., Buller H. A., Dekker J., Einerhand A. W.. 2003; Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J Virol77:13005–13016
    [Google Scholar]
  7. Broquet A. H., Lenoir C., Gardet A., Sapin C., Chwetzoff S., Jouniaux A. M., Lopez S., Trugnan G., Bachelet M., Thomas G.. 2007; Hsp70 negatively controls rotavirus protein bioavailability in Caco-2 cells infected by the rotavirus RF strain. J Virol81:1297–1304
    [Google Scholar]
  8. Bukrinsky M., Zhao Y.. 2004; Heat-shock proteins reverse the G2 arrest caused by HIV-1 viral protein R. DNA Cell Biol23:223–225
    [Google Scholar]
  9. Burns J. W., Krishnaney A. A., Vo P. T., Rouse R. V., Anderson L. J., Greenberg H. B.. 1995; Analyses of homologous rotavirus infection in the mouse model. Virology207:143–153
    [Google Scholar]
  10. Castilho J. G., Botelho M. V., Lauretti F., Taniwaki N., Linhares R. E., Nozawa C.. 2004; The in vitro cytopathology of a porcine and the simian (SA-11) strains of rotavirus. Mem Inst Oswaldo Cruz99:313–317
    [Google Scholar]
  11. Chaibi C., Cotte-Laffitte J., Sandre C., Esclatine A., Servin A. L., Quero A. M., Geniteau-Legendre M.. 2005; Rotavirus induces apoptosis in fully differentiated human intestinal Caco-2 cells. Virology332:480–490
    [Google Scholar]
  12. Chwetzoff S., Trugnan G.. 2006; Rotavirus assembly: an alternative model that utilizes an atypical trafficking pathway. Curr Top Microbiol Immunol309:245–261
    [Google Scholar]
  13. Coulson B. S.. 1993; Typing of human rotavirus VP4 by an enzyme immunoassay using monoclonal antibodies. J Clin Microbiol31:1–8
    [Google Scholar]
  14. Crusius K., Auvinen E., Steuer B., Gaissert H., Alonso A.. 1998; The human papillomavirus type 16 E5-protein modulates ligand-dependent activation of the EGF receptor family in the human epithelial cell line HaCaT. Exp Cell Res241:76–83
    [Google Scholar]
  15. Cuadras M. A., Feigelstock D. A., An S., Greenberg H. B.. 2002; Gene expression pattern in Caco-2 cells following rotavirus infection. J Virol76:4467–4482
    [Google Scholar]
  16. Daugaard M., Rohde M., Jaattela M.. 2007; The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett581:3702–3710
    [Google Scholar]
  17. Dawson C. W., Tramountanis G., Eliopoulos A. G., Young L. S.. 2003; Epstein–Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem278:3694–3704
    [Google Scholar]
  18. Dickman K. G., Hempson S. J., Anderson J., Lippe S., Zhao L., Burakoff R., Shaw R. D.. 2000; Rotavirus alters paracellular permeability and energy metabolism in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol279:G757–G766
    [Google Scholar]
  19. Dutta D., Bagchi P., Chatterjee A., Nayak M. K., Mukherjee A., Chattopadhyay S., Nagashima S., Kobayashi N., Komoto S.. other authors 2009; The molecular chaperone heat shock protein-90 positively regulates rotavirus infection. Virology391:325–333
    [Google Scholar]
  20. Frisch S. M., Ruoslahti E.. 1997; Integrins and anoikis. Curr Opin Cell Biol9:701–706
    [Google Scholar]
  21. Graham K. L., Halasz P., Tan Y., Hewish M. J., Takada Y., Mackow E. R., Robinson M. K., Coulson B. S.. 2003; Integrin-using rotaviruses bind α 2 β 1 integrin α 2 I domain via VP4 DGE sequence and recognize α X β 2 and α V β 3 by using VP7 during cell entry. J Virol77:9969–9978
    [Google Scholar]
  22. Groene W. S., Shaw R. D.. 1992; Psoralen preparation of antigenically intact noninfectious rotavirus particles. J Virol Methods38:93–102
    [Google Scholar]
  23. Halasz P., Holloway G., Turner S. J., Coulson B. S.. 2008; Rotavirus replication in intestinal cells differentially regulates integrin expression by a phosphatidylinositol 3-kinase-dependent pathway, resulting in increased cell adhesion and virus yield. J Virol82:148–160
    [Google Scholar]
  24. Haselhorst T., Fleming F. E., Dyason J. C., Hartnell R. D., Yu X., Holloway G., Santegoets K., Kiefel M. J., Blanchard H.. other authors 2009; Sialic acid dependence in rotavirus host cell invasion. Nat Chem Biol5:91–93
    [Google Scholar]
  25. Hewish M. J., Takada Y., Coulson B. S.. 2000; Integrins α 2 β 1 and α 4 β 1 can mediate SA11 rotavirus attachment and entry into cells. J Virol74:228–236
    [Google Scholar]
  26. Hirata Y., Broquet A. H., Menchen L., Kagnoff M. F.. 2007; Activation of innate immune defense mechanisms by signaling through RIG-I/IPS-1 in intestinal epithelial cells. J Immunol179:5425–5432
    [Google Scholar]
  27. Holloway G., Coulson B. S.. 2006; Rotavirus activates JNK and p38 signaling pathways in intestinal cells, leading to AP-1-driven transcriptional responses and enhanced virus replication. J Virol80:10624–10633
    [Google Scholar]
  28. Jolly C. L., Beisner B. M., Holmes I. H.. 2000; Rotavirus infection of MA104 cells is inhibited by Ricinus lectin and separately expressed single binding domains. Virology275:89–97
    [Google Scholar]
  29. Jourdan N., Maurice M., Delautier D., Quero A. M., Servin A. L., Trugnan G.. 1997; Rotavirus is released from the apical surface of cultured human intestinal cells through nonconventional vesicular transport that bypasses the Golgi apparatus. J Virol71:8268–8278
    [Google Scholar]
  30. Koyama A. H., Adachi A., Irie H.. 2003; Physiological significance of apoptosis during animal virus infection. Int Rev Immunol22:341–359
    [Google Scholar]
  31. Laprise P., Langlois M. J., Boucher M. J., Jobin C., Rivard N.. 2004; Down-regulation of MEK/ERK signaling by E-cadherin-dependent PI3K/Akt pathway in differentiating intestinal epithelial cells. J Cell Physiol199:32–39
    [Google Scholar]
  32. Lee C. J., Liao C. L., Lin Y. L.. 2005; Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. J Virol79:8388–8399
    [Google Scholar]
  33. Little L. M., Shadduck J. A.. 1982; Pathogenesis of rotavirus infection in mice. Infect Immun38:755–763
    [Google Scholar]
  34. Londrigan S. L., Hewish M. J., Thomson M. J., Sanders G. M., Mustafa H., Coulson B. S.. 2000; Growth of rotaviruses in continuous human and monkey cell lines that vary in their expression of integrins. J Gen Virol81:2203–2213
    [Google Scholar]
  35. Majumdar A. P., Du J.. 2006; Phosphatidylinositol 3-kinase/Akt signaling stimulates colonic mucosal cell survival during aging. Am J Physiol Gastrointest Liver Physiol290:G49–G55
    [Google Scholar]
  36. Martin-Latil S., Mousson L., Autret A., Colbere-Garapin F., Blondel B.. 2007; Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol81:4457–4464
    [Google Scholar]
  37. Meggio F., Donella Deana A., Ruzzene M., Brunati A. M., Cesaro L., Guerra B., Meyer T., Mett H., Fabbro D.. other authors 1995; Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur J Biochem234:317–322
    [Google Scholar]
  38. Musalem C., Espejo R. T.. 1985; Release of progeny virus from cells infected with simian rotavirus SA11. J Gen Virol66:2715–2724
    [Google Scholar]
  39. Nagesha H. S., Brown L. E., Holmes I. H.. 1989; Neutralizing monoclonal antibodies against three serotypes of porcine rotavirus. J Virol63:3545–3549
    [Google Scholar]
  40. Perez J. F., Chemello M. E., Liprandi F., Ruiz M. C., Michelangeli F.. 1998; Oncosis in MA104 cells is induced by rotavirus infection through an increase in intracellular Ca2+ concentration. Virology252:17–27
    [Google Scholar]
  41. Perez J. F., Ruiz M. C., Chemello M. E., Michelangeli F.. 1999; Characterization of a membrane calcium pathway induced by rotavirus infection in cultured cells. J Virol73:2481–2490
    [Google Scholar]
  42. Portis T., Longnecker R.. 2004; Epstein–Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene23:8619–8628
    [Google Scholar]
  43. Randall R. E., Goodbourn S.. 2008; Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol89:1–47
    [Google Scholar]
  44. Seo N. S., Zeng C. Q., Hyser J. M., Utama B., Crawford S. E., Kim K. J., Hook M., Estes M. K.. 2008; Integrins α 1 β 1 and α 2 β 1 are receptors for the rotavirus enterotoxin. Proc Natl Acad Sci U S A105:8811–8818
    [Google Scholar]
  45. Shaulian E., Karin M.. 2002; AP-1 as a regulator of cell life and death. Nat Cell Biol4:E131–E136
    [Google Scholar]
  46. Shaw R. D., Hempson S. J.. 1996; Replication as a determinant of the intestinal response to rotavirus. J Infect Dis174:1328–1331
    [Google Scholar]
  47. Shaw R. D., Hempson S. J., Mackow E. R.. 1995; Rotavirus diarrhea is caused by nonreplicating viral particles. J Virol69:5946–5950
    [Google Scholar]
  48. Smith M. L., Lazdins I., Holmes I. H.. 1980; Coding assignments of double-stranded RNA segments of SA11 rotavirus established by in vitro translation. J Virol33:976–982
    [Google Scholar]
  49. Snodgrass D. R., Ferguson A., Allan F., Angus K. W., Mitchell B.. 1979; Small intestinal morphology and epithelial cell kinetics in lamb rotavirus infections. Gastroenterology76:477–481
    [Google Scholar]
  50. Soares M. M., King S. W., Thorpe P. E.. 2008; Targeting inside-out phosphatidylserine as a therapeutic strategy for viral diseases. Nat Med14:1357–1362
    [Google Scholar]
  51. Superti F., Ammendolia M. G., Tinari A., Bucci B., Giammarioli A. M., Rainaldi G., Rivabene R., Donelli G.. 1996; Induction of apoptosis in HT-29 cells infected with SA-11 rotavirus. J Med Virol50:325–334
    [Google Scholar]
  52. Vermes I., Haanen C., Steffens-Nakken H., Reutelingsperger C.. 1995; A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods184:39–51
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.018275-0
Loading
/content/journal/jgv/10.1099/vir.0.018275-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error