1887

Abstract

The highly pathogenic Marburg virus (MARV) can only be investigated in high containment laboratories, which is time consuming and expensive. To investigate the MARV life cycle under normal laboratory conditions, an infectious virus-like particle (VLP) system was developed. The infectious VLP system is based on the T7-polymerase driven synthesis of a MARV-specific minigenome that encodes luciferase and is transcribed and replicated by the simultaneously expressed MARV nucleocapsid proteins NP, VP35, L and VP30. Transcription of the minigenome resulted in luciferase activity and replication resulted in encapsidated minigenomes. The encapsidated minigenomes, together with the viral matrix proteins VP40 and VP24 and the surface glycoprotein (GP), formed VLPs at the plasma membrane. Among the released pleomorphic VLPs, filamentous particles of 200–400 nm in length showed the highest capacity to induce reporter activity upon infection of target cells. To characterize the infectious VLP system, the intracellular concentration of one of the components was titrated, while all others were held constant. Intracellular concentrations of nucleocapsid proteins that resulted in highest replication and transcription activities also yielded VLPs with the highest ability to induce luciferase activity in target cells. High intracellular levels of VP40 maximized the release of VLPs, but reduced their ability to induce luciferase activity in target cells. The intracellular concentration of GP positively correlated with its incorporation into VLPs and their infectivity. Finally, we demonstrated that the infectious VLP system was suitable for rapid screening of neutralizing antibodies directed against MARV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.018226-0
2010-05-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/5/1325.html?itemId=/content/journal/jgv/10.1099/vir.0.018226-0&mimeType=html&fmt=ahah

References

  1. Alazard-Dany, N., Volchkova, V., Reynard, O., Carbonnelle, C., Dolnik, O., Ottmann, M., Khromykh, A. & Volchkov, V. E. ( 2006; ). Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level. J Gen Virol 87, 1247–1257.[CrossRef]
    [Google Scholar]
  2. Bamberg, S., Kolesnikova, L., Möller, P., Klenk, H. D. & Becker, S. ( 2005; ). VP24 of Marburg virus influences formation of infectious particles. J Virol 79, 13421–13433.[CrossRef]
    [Google Scholar]
  3. Becker, S., Spiess, M. & Klenk, H. D. ( 1995; ). The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. J Gen Virol 76, 393–399.[CrossRef]
    [Google Scholar]
  4. Becker, S., Klenk, H. D. & Mühlberger, E. ( 1996; ). Intracellular transport and processing of the Marburg virus surface protein in vertebrate and insect cells. Virology 225, 145–155.[CrossRef]
    [Google Scholar]
  5. Becker, S., Rinne, C., Hofsass, U., Klenk, H. D. & Mühlberger, E. ( 1998; ). Interactions of Marburg virus nucleocapsid proteins. Virology 249, 406–417.[CrossRef]
    [Google Scholar]
  6. Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P. & Cunningham, J. M. ( 2005; ). Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308, 1643–1645.[CrossRef]
    [Google Scholar]
  7. Dolnik, O., Kolesnikova, L. & Becker, S. ( 2008; ). Filoviruses: interactions with the host cell. Cell Mol Life Sci 65, 756–776.[CrossRef]
    [Google Scholar]
  8. Enterlein, S., Volchkov, V., Weik, M., Kolesnikova, L., Volchkova, V., Klenk, H. D. & Mühlberger, E. ( 2006; ). Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30. J Virol 80, 1038–1043.[CrossRef]
    [Google Scholar]
  9. Feldmann, H., Will, C., Schikore, M., Slenczka, W. & Klenk, H. D. ( 1991; ). Glycosylation and oligomerization of the spike protein of Marburg virus. Virology 182, 353–356.[CrossRef]
    [Google Scholar]
  10. Ferran, M. C. & Lucas-Lenard, J. M. ( 1997; ). The vesicular stomatitis virus matrix protein inhibits transcription from the human beta interferon promoter. J Virol 71, 371–377.
    [Google Scholar]
  11. Finke, S., Mueller-Waldeck, R. & Conzelmann, K. K. ( 2003; ). Rabies virus matrix protein regulates the balance of virus transcription and replication. J Gen Virol 84, 1613–1621.[CrossRef]
    [Google Scholar]
  12. Fowler, T., Bamberg, S., Möller, P., Klenk, H. D., Meyer, T. F., Becker, S. & Rudel, T. ( 2005; ). Inhibition of Marburg virus protein expression and viral release by RNA interference. J Gen Virol 86, 1181–1188.[CrossRef]
    [Google Scholar]
  13. Geisbert, T. W. & Jahrling, P. B. ( 1995; ). Differentiation of filoviruses by electron microscopy. Virus Res 39, 129–150.[CrossRef]
    [Google Scholar]
  14. Hoenen, T., Groseth, A., Falzarano, D. & Feldmann, H. ( 2006a; ). Ebola virus: unravelling pathogenesis to combat a deadly disease. Trends Mol Med 12, 206–215.[CrossRef]
    [Google Scholar]
  15. Hoenen, T., Groseth, A., Kolesnikova, L., Theriault, S., Ebihara, H., Hartlieb, B., Bamberg, S., Feldmann, H., Stroher, U. & other authors ( 2006b; ). Infection of naive target cells with virus-like particles: implications for the function of ebola virus VP24. J Virol 80, 7260–7264.[CrossRef]
    [Google Scholar]
  16. Jasenosky, L. D., Neumann, G., Lukashevich, I. & Kawaoka, Y. ( 2001; ). Ebola virus VP40-induced particle formation and association with the lipid bilayer. J Virol 75, 5205–5214.[CrossRef]
    [Google Scholar]
  17. Kolesnikova, L., Mühlberger, E., Ryabchikova, E. & Becker, S. ( 2000; ). Ultrastructural organization of recombinant Marburg virus nucleoprotein: comparison with Marburg virus inclusions. J Virol 74, 3899–3904.[CrossRef]
    [Google Scholar]
  18. Kolesnikova, L., Bugany, H., Klenk, H. D. & Becker, S. ( 2002; ). VP40, the matrix protein of Marburg virus, is associated with membranes of the late endosomal compartment. J Virol 76, 1825–1838.[CrossRef]
    [Google Scholar]
  19. Kolesnikova, L., Berghofer, B., Bamberg, S. & Becker, S. ( 2004; ). Multivesicular bodies as a platform for formation of the Marburg virus envelope. J Virol 78, 12277–12287.[CrossRef]
    [Google Scholar]
  20. Kolesnikova, L., Bohil, A. B., Cheney, R. E. & Becker, S. ( 2007a; ). Budding of Marburgvirus is associated with filopodia. Cell Microbiol 9, 939–951.[CrossRef]
    [Google Scholar]
  21. Kolesnikova, L., Ryabchikova, E., Shestopalov, A. & Becker, S. ( 2007b; ). Basolateral budding of Marburg virus: VP40 retargets viral glycoprotein GP to the basolateral surface. J Infect Dis 196, S232–S236.[CrossRef]
    [Google Scholar]
  22. Kolesnikova, L., Strecker, T., Morita, E., Zielecki, F., Mittler, E., Crump, C. & Becker, S. ( 2009; ). Vacuolar protein sorting pathway contributes to the release of Marburg virus. J Virol 83, 2327–2337.[CrossRef]
    [Google Scholar]
  23. Liu, T. & Ye, Z. ( 2002; ). Restriction of viral replication by mutation of the influenza virus matrix protein. J Virol 76, 13055–13061.[CrossRef]
    [Google Scholar]
  24. Marzi, A., Wegele, A. & Pohlmann, S. ( 2006; ). Modulation of virion incorporation of Ebolavirus glycoprotein: effects on attachment, cellular entry and neutralization. Virology 352, 345–356.[CrossRef]
    [Google Scholar]
  25. Mittler, E., Kolesnikova, L., Strecker, T., Garten, W. & Becker, S. ( 2007; ). Role of the transmembrane domain of Marburg virus surface protein GP for the assembly of the viral envelope. J Virol 81, 3942–3948.[CrossRef]
    [Google Scholar]
  26. Möller, P., Pariente, N., Klenk, H.-D. & Becker, S. ( 2005; ). Homo-oligomerization of Marburgvirus VP35 is essential for its function in replication and transcription. J Virol 79, 14876–14886.[CrossRef]
    [Google Scholar]
  27. Mühlberger, E., Lotfering, B., Klenk, H.-D. & Becker, S. ( 1998; ). Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72, 8756–8764.
    [Google Scholar]
  28. Mühlberger, E., Weik, M., Volchkov, V. E., Klenk, H.-D. & Becker, S. ( 1999; ). Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 73, 2333–2342.
    [Google Scholar]
  29. Pulmanausahakul, R., Li, J., Schnell, M. J. & Dietzschold, B. ( 2008; ). The glycoprotein and the matrix protein of rabies virus affect pathogenicity by regulating viral replication and facilitating cell-to-cell spread. J Virol 82, 2330–2338.[CrossRef]
    [Google Scholar]
  30. Sanchez, A., Geisbert, T. W. & Feldmann, H. ( 2007; ). Filoviridae. In Virology, vol. 1, pp. 1409–1448. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Wolters Kluwer.
  31. Schornberg, K., Matsuyama, S., Kabsch, K., Delos, S., Bouton, A. & White, J. ( 2006; ). Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol 80, 4174–4178.[CrossRef]
    [Google Scholar]
  32. Swenson, D. L., Warfield, K. L., Kuehl, K., Larsen, T., Hevey, M. C., Schmaljohn, A., Bavari, S. & Aman, M. J. ( 2004; ). Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. FEMS Immunol Med Microbiol 40, 27–31.[CrossRef]
    [Google Scholar]
  33. Urata, S. & Yasuda, J. ( 2010; ). Regulation of Marburg virus budding by Nedd4.1: a different WW domain of Nedd4.1 is critical for the binding to Marburg and Ebola virus VP40. J Gen Virol 91, 228–234.[CrossRef]
    [Google Scholar]
  34. Urata, S., Noda, T., Kawaoka, Y., Morikawa, S., Yokosawa, H. & Yasuda, J. ( 2007; ). Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP. J Virol 81, 4895–4899.[CrossRef]
    [Google Scholar]
  35. Volchkov, V. E., Volchkova, V. A., Muhlberger, E., Kolesnikova, L. V., Weik, M., Dolnik, O. & Klenk, H. D. ( 2001; ). Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291, 1965–1969.[CrossRef]
    [Google Scholar]
  36. Watanabe, S., Watanabe, T., Noda, T., Takada, A., Feldmann, H., Jasenosky, L. D. & Kawaoka, Y. ( 2004; ). Production of novel Ebola virus-like particles from cDNAs: an alternative to Ebola virus generation by reverse genetics. J Virol 78, 999–1005.[CrossRef]
    [Google Scholar]
  37. Watanabe, S., Noda, T., Halfmann, P., Jasenosky, L. & Kawaoka, Y. ( 2007; ). Ebola Virus (EBOV) VP24 inhibits transcription and replication of the EBOV genome. J Infect Dis 196, S284–S290.[CrossRef]
    [Google Scholar]
  38. Will, C., Mühlberger, E., Linder, D., Slenczka, W., Klenk, H. D. & Feldmann, H. ( 1993; ). Marburg virus gene 4 encodes the virion membrane protein, a type I transmembrane glycoprotein. J Virol 67, 1203–1210.
    [Google Scholar]
  39. Yang, Z. Y., Duckers, H. J., Sullivan, N. J., Sanchez, A., Nabel, E. G. & Nabel, G. J. ( 2000; ). Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med 6, 886–889.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.018226-0
Loading
/content/journal/jgv/10.1099/vir.0.018226-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1325 - 1334

Released VLPs

Titration of pCAGGS-L

Titration of pCAGGS-VP30

Composition of the standard plasmid mix for the MARV infectious VLP system

 

 

 



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error