Merino Walk virus (MWV), a proposed novel tentative species of the family , was isolated from a rodent, , collected at Merino Walk, Eastern Cape, South Africa, in 1985. Full-length genomic sequence confirmed MWV as an arenavirus related distantly to Mobala, Mopeia and Ippy viruses, all members of the Old World arenavirus complex. We propose MWV as a tentative novel species in the Lassa–lymphocytic choriomeningitis virus complex, based on its isolation from a novel rodent species and its genetic and serological characteristics.


Article metrics loading...

Loading full text...

Full text loading...



  1. Archer, A. M. & Rico-Hesse, R.(2002). High genetic divergence and recombination in arenaviruses from the Americas. Virology 304, 274–281.[CrossRef] [Google Scholar]
  2. Auperin, D. D., Romanowski, V., Galinski, M. & Bishop, D. H.(1984). Sequencing studies of pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J Virol 52, 897–904. [Google Scholar]
  3. Auperin, D. D., Sasso, D. R. & McCormick, J. B.(1986). Nucleotide sequence of the glycoprotein gene and intergenic region of the Lassa virus S genome RNA. Virology 154, 155–167.[CrossRef] [Google Scholar]
  4. Beaty, B., Calisher, C. & Shope, R.(1995). Arboviruses. In Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections, 7th edn, pp. 189–212. Edited by E. H. Lennette, D. A. Lennette & E. T. Lennette. Washington, DC: American Public Health Association.
  5. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S.(2004). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783–795.[CrossRef] [Google Scholar]
  6. Beyer, W. R., Popplau, D., Garten, W., von Laer, D. & Lenz, O.(2003). Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J Virol 77, 2866–2872.[CrossRef] [Google Scholar]
  7. Bowen, M. D., Peters, C. J. & Nichol, S. T.(1996). The phylogeny of New World (Tacaribe complex) arenaviruses. Virology 219, 285–290.[CrossRef] [Google Scholar]
  8. Bowen, M. D., Peters, C. J. & Nichol, S. T.(1997). Phylogenetic analysis of the Arenaviridae: patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol Phylogenet Evol 8, 301–316.[CrossRef] [Google Scholar]
  9. Bowen, M. D., Rollin, P. E., Ksiazek, T. G., Hustad, H. L., Bausch, D. G., Demby, A. H., Bajani, M. D., Peters, C. J. & Nichol, S. T.(2000). Genetic diversity among Lassa virus strains. J Virol 74, 6992–7004.[CrossRef] [Google Scholar]
  10. Briese, T., Paweska, J. T., McMullan, L. K., Hutchison, S. K., Street, C., Palacios, G., Khristova, M. L., Weyer, J., Swanepoel, R. & other authors(2009). Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog 5, e1000455[CrossRef] [Google Scholar]
  11. Buckley, S. M. & Casals, J.(1970). Lassa fever, a new virus disease of man from West Africa. 3. Isolation and characterization of the virus. Am J Trop Med Hyg 19, 680–691. [Google Scholar]
  12. Burns, J. W. & Buchmeier, M. J.(1991). Protein–protein interactions in lymphocytic choriomeningitis virus. Virology 183, 620–629.[CrossRef] [Google Scholar]
  13. Burns, J. W. & Buchmeier, M. J.(1993). Glycoproteins of the arenaviruses. In The Arenaviridae, pp. 17–35. Edited by M. S. Salvato. New York: Plenum Press.
  14. Cao, W., Henry, M. D., Borrow, P., Yamada, H., Elder, J. H., Ravkov, E. V., Nichol, S. T., Compans, R. W., Campbell, K. P. & Oldstone, M. B.(1998). Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282, 2079–2081.[CrossRef] [Google Scholar]
  15. Capul, A. A., Perez, M., Burke, E., Kunz, S., Buchmeier, M. J. & de la Torre, J. C.(2007). Arenavirus Z–glycoprotein association requires Z myristoylation but not functional RING or late domains. J Virol 81, 9451–9460.[CrossRef] [Google Scholar]
  16. Charrel, R. N., de Lamballerie, X. & Fulhorst, C. F.(2001). The Whitewater Arroyo virus: natural evidence for genetic recombination among Tacaribe serocomplex viruses (family Arenaviridae). Virology 283, 161–166.[CrossRef] [Google Scholar]
  17. Charrel, R. N., de Lamballerie, X. & Emonet, S.(2008). Phylogeny of the genus Arenavirus. Curr Opin Microbiol 11, 362–368.[CrossRef] [Google Scholar]
  18. Claros, M. G. & von Heijne, G.(1994). TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10, 685–686. [Google Scholar]
  19. Cox-Foster, D. L., Conlan, S., Holmes, E. C., Palacios, G., Evans, J. D., Moran, N. A., Quan, P. L., Briese, T., Hornig, M. & other authors(2007). A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287.[CrossRef] [Google Scholar]
  20. Davis, D.(1962). Distribution patterns of southern African Muridae, with some of their fossil antecedents. Ann Cape Prov Mus 2, 56–76. [Google Scholar]
  21. Delarue, M., Poch, O., Tordo, N., Moras, D. & Argos, P.(1990). An attempt to unify the structure of polymerases. Protein Eng 3, 461–467.[CrossRef] [Google Scholar]
  22. Downs, W. G., Anderson, C. R., Spence, L., Aitken, T. H. G. & Greenhall, A. H.(1963). Tacaribe virus, a new agent isolated from Artibeus bats and mosquitoes in Trinidad, West Indies. Am J Trop Med Hyg 12, 640–646. [Google Scholar]
  23. Drummond, A. J. & Rambaut, A.(2007).beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7, 214[CrossRef] [Google Scholar]
  24. Eichler, R., Lenz, O., Strecker, T., Eickmann, M., Klenk, H. D. & Garten, W.(2004). Lassa virus glycoprotein signal peptide displays a novel topology with an extended endoplasmic reticulum luminal region. J Biol Chem 279, 12293–12299.[CrossRef] [Google Scholar]
  25. Emonet, S., Lemasson, J. J., Gonzalez, J. P., de Lamballerie, X. & Charrel, R. N.(2006). Phylogeny and evolution of Old World arenaviruses. Virology 350, 251–257.[CrossRef] [Google Scholar]
  26. Fulhorst, C. F., Bowen, M. D., Ksiazek, T. G., Rollin, P. E., Nichol, S. T., Kosoy, M. Y. & Peters, C. J.(1996). Isolation and characterization of Whitewater Arroyo virus, a novel North American arenavirus. Virology 224, 114–120.[CrossRef] [Google Scholar]
  27. Fulhorst, C. E., Bowen, M. D., Salas, R. A., de Manzione, N. M., Duno, G., Utrera, A., Ksiazek, T. G., Peters, C. J., Nichol, S. T. & other authors(1997). Isolation and characterization of pirital virus, a newly discovered South American arenavirus. Am J Trop Med Hyg 56, 548–553. [Google Scholar]
  28. Ghiringhelli, P. D., Rivera-Pomar, R. V., Lozano, M. E., Grau, O. & Romanowski, V.(1991). Molecular organization of Junin virus S RNA: complete nucleotide sequence, relationship with other members of the Arenaviridae and unusual secondary structures. J Gen Virol 72, 2129–2141.[CrossRef] [Google Scholar]
  29. Gonzalez, J. P., McCormick, J. B., Saluzzo, J. F., Herve, J. P., Georges, A. J. & Johnson, K. M.(1983). An arenavirus isolated from wild-caught rodents (Pramys species) in the Central African Republic. Intervirology 19, 105–112.[CrossRef] [Google Scholar]
  30. Gonzalez, J. P., Sanchez, A. & Rico-Hesse, R.(1995). Molecular phylogeny of Guanarito virus, an emerging arenavirus affecting humans. Am J Trop Med Hyg 53, 1–6. [Google Scholar]
  31. Gonzalez, J. P., Bowen, M. D., Nichol, S. T. & Rico-Hesse, R.(1996). Genetic characterization and phylogeny of Sabiá virus, an emergent pathogen in Brazil. Virology 221, 318–324.[CrossRef] [Google Scholar]
  32. Hui, E. K., Barman, S., Yang, T. Y. & Nayak, D. P.(2003). Basic residues of the helix six domain of influenza virus M1 involved in nuclear translocation of M1 can be replaced by PTAP and YPDL late assembly domain motifs. J Virol 77, 7078–7092.[CrossRef] [Google Scholar]
  33. Iapalucci, S., Lopez, N. & Franze-Fernandez, M. T.(1991). The 3′ end termini of the Tacaribe arenavirus subgenomic RNAs. Virology 182, 269–278.[CrossRef] [Google Scholar]
  34. Joazeiro, C. A., Wing, S. S., Huang, H., Leverson, J. D., Hunter, T. & Liu, Y. C.(1999). The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312.[CrossRef] [Google Scholar]
  35. Johnson, K. M., Wiebenga, N. H., Mackenzie, R. B., Kuns, M. L., Tauraso, N. M., Shelokov, A., Webb, P. A., Justines, G. & Beye, H. K.(1965). Virus isolations from human cases of hemorrhagic fever in Bolivia. Proc Soc Exp Biol Med 118, 113–118.[CrossRef] [Google Scholar]
  36. Käll, L., Krogh, A. & Sonnhammer, E. L.(2004). A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338, 1027–1036.[CrossRef] [Google Scholar]
  37. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L.(2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567–580.[CrossRef] [Google Scholar]
  38. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  39. Lenz, O., ter Meulen, J., Feldmann, H., Klenk, H. D. & Garten, W.(2000). Identification of a novel consensus sequence at the cleavage site of the Lassa virus glycoprotein. J Virol 74, 11418–11421.[CrossRef] [Google Scholar]
  40. Lenz, O., ter Meulen, J., Klenk, H. D., Seidah, N. G. & Garten, W.(2001). The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A 98, 12701–12705.[CrossRef] [Google Scholar]
  41. Lisieux, T., Coimbra, M., Nassar, E. S., Burattini, M. N., de Souza, L. T. M., Ferreira, I. B., Rocco, I. M., da Rosa, A. P. A. T., Vasconcelos, P. F. C., Pinheiro, F. P. & other authors(1994). New arenavirus isolated in Brazil. Lancet 343, 391–392.[CrossRef] [Google Scholar]
  42. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J. & other authors(2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380. [Google Scholar]
  43. Meunier, D. Y., McCormick, J. B., Georges, A. J., Georges, M. C. & Gonzalez, J. P.(1985). Comparison of Lassa, Mobala, and Ippy virus reactions by immunofluorescence test. Lancet 1, 873–874. [Google Scholar]
  44. Moncayo, A. C., Hice, C. L., Watts, D. M., Travassos de Rosa, A. P., Guzman, H., Russell, K. L., Calampa, C., Gozalo, A., Popov, V. L. & other authors(2001). Allpahuayo virus: a newly recognized arenavirus (Arenaviridae) from arboreal rice rats (Oecomys bicolor and Oecomys paricola) in northeastern Peru. Virology 284, 277–286.[CrossRef] [Google Scholar]
  45. Müller, R., Poch, O., Delarue, M., Bishop, D. H. & Bouloy, M.(1994). Rift Valley fever virus L segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases. J Gen Virol 75, 1345–1352.[CrossRef] [Google Scholar]
  46. Musser, G. & Carleton, M.(2005). Superfamily Muroidea. In Mammal Species of the World: a Taxonomic and Geographic Reference, pp. 894–1531. Edited by D. Wilson & D. Reeder. Washington, DC: Smithsonian Institution Press.
  47. Neuman, B. W., Adair, B. D., Burns, J. W., Milligan, R. A., Buchmeier, M. J. & Yeager, M.(2005). Complementarity in the supramolecular design of arenaviruses and retroviruses revealed by electron cryomicroscopy and image analysis. J Virol 79, 3822–3830.[CrossRef] [Google Scholar]
  48. Palacios, G., Quan, P. L., Jabado, O. J., Conlan, S., Hirschberg, D. L., Liu, Y., Zhai, J., Renwick, N., Hui, J. & other authors(2007). Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis 13, 73–81.[CrossRef] [Google Scholar]
  49. Palacios, G., Druce, J., Du, L., Tran, T., Birch, C., Briese, T., Conlan, S., Quan, P. L., Hui, J. & other authors(2008). A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med 358, 991–998.[CrossRef] [Google Scholar]
  50. Parisi, G., Echave, J., Ghiringhelli, D. & Romanowski, V.(1996). Computational characterisation of potential RNA-binding sites in arenavirus nucleocapsid proteins. Virus Genes 13, 247–254.[CrossRef] [Google Scholar]
  51. Parodi, A. S., Greenway, D. J., Rugiero, H. R., Frigerio, M., De La Barrera, J. M., Mettler, N., Garzon, F., Boxaca, M., Guerrero, L. & Nota, N.(1958). Concerning the epidemic outbreak in Junin. Dia Med 30, 2300–2301 (in Spanish). [Google Scholar]
  52. Paweska, J., Sewlall, N., Ksiazek, T., Blumberg, L., Hale, M., Lipkin, W. I., Weyer, J., Nichol, S. T., Rollin, P. E. & other authors(2009). Nosocomial outbreak of novel arenavirus infection, Southern Africa. Emerg Infect Dis 15 [Google Scholar]
  53. Perez, M., Craven, R. C. & de la Torre, J. C.(2003). The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci U S A 100, 12978–12983.[CrossRef] [Google Scholar]
  54. Perez, M., Greenwald, D. L. & de la Torre, J. C.(2004). Myristoylation of the RING finger Z protein is essential for arenavirus budding. J Virol 78, 11443–11448.[CrossRef] [Google Scholar]
  55. Peters, C. J.(2006). Lymphocytic choriomeningitis virus – an old enemy up to new tricks. N Engl J Med 354, 2208–2211.[CrossRef] [Google Scholar]
  56. Pinheiro, F. P. & Woodall, J. P.(1969).Ecological Studies on Amapari Virus, p. 18. Rio de Janeiro: Fundacao Servico Especial de Saude Publica Rio de Janeiro.
  57. Pirosky, I., Zuccarini, J., Molinelli, E. A. & Di Pietro, A.(1959). Virosis hemorragica del noroeste bonaerense. II. Recuperacion del virus causal a partir de acaros (Mesostigmata) capturados (1958) en la zona epidemica. Orientacion Medica 8, 156(in Spanish) [Google Scholar]
  58. Poch, O., Sauvaget, I., Delarue, M. & Tordo, N.(1989). Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8, 3867–3874. [Google Scholar]
  59. Puffer, B. A., Parent, L. J., Wills, J. W. & Montelaro, R. C.(1997). Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J Virol 71, 6541–6546. [Google Scholar]
  60. Radoshitzky, S. R., Abraham, J., Spiropoulou, C. F., Kuhn, J. H., Nguyen, D., Li, W., Nagel, J., Schmidt, P. J., Nunberg, J. H. & other authors(2007). Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446, 92–96.[CrossRef] [Google Scholar]
  61. Rojek, J. M., Lee, A. M., Nguyen, N., Spiropoulou, C. F. & Kunz, S.(2008a). Site 1 protease is required for proteolytic processing of the glycoproteins of the South American hemorrhagic fever viruses Junin, Machupo, and Guanarito. J Virol 82, 6045–6051.[CrossRef] [Google Scholar]
  62. Rojek, J. M., Perez, M. & Kunz, S.(2008b). Cellular entry of lymphocytic choriomeningitis virus. J Virol 82, 1505–1517.[CrossRef] [Google Scholar]
  63. Romanowski, V. & Bishop, D. H.(1985). Conserved sequences and coding of two strains of lymphocytic choriomeningitis virus (WE and ARM) and Pichinde arenavirus. Virus Res 2, 35–51.[CrossRef] [Google Scholar]
  64. Salas, R., de Manzione, N., Tesh, R. B., Rico-Hesse, R., Shope, R. E., Betancourt, A., Godoy, O., Bruzual, R., Pacheco, M. E. & other authors(1991). Venezuelan haemorrhagic fever. Lancet 338, 1033–1036.[CrossRef] [Google Scholar]
  65. Salvato, M. S. & Shimomaye, E. M.(1989). The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein. Virology 173, 1–10.[CrossRef] [Google Scholar]
  66. Salvato, M., Clegg, J., Buchmeier, M., Charrel, R., Gonzalez, J., Lukashevich, I., Peters, C., Rico-Hesse, R. & Romanowski, V.(2005). Family Arenaviridae. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, pp. 725–733. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. London: Elsevier Academic Press.
  67. Skinner, J. & Smithers, R.(1990).The Mammals of the Southern African Subregion. Pretoria: University of Pretoria.
  68. Spiropoulou, C. F., Kunz, S., Rollin, P. E., Campbell, K. P. & Oldstone, M. B.(2002). New World arenavirus clade C, but not clade A and B viruses, utilizes α-dystroglycan as its major receptor. J Virol 76, 5140–5146.[CrossRef] [Google Scholar]
  69. Staub, O., Dho, S., Henry, P., Correa, J., Ishikawa, T., McGlade, J. & Rotin, D.(1996). WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J 15, 2371–2380. [Google Scholar]
  70. Strecker, T., Eichler, R., Meulen, J., Weissenhorn, W., Dieter Klenk, H., Garten, W. & Lenz, O.(2003). Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles. J Virol 77, 10700–10705.[CrossRef] [Google Scholar]
  71. Strecker, T., Maisa, A., Daffis, S., Eichler, R., Lenz, O. & Garten, W.(2006). The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virol J 3, 93[CrossRef] [Google Scholar]
  72. Swanepoel, R., Leman, P. A., Shepherd, A. J., Shepherd, S. P., Kiley, M. P. & McCormick, J. B.(1985). Identification of Ippy as a Lassa-fever-related virus. Lancet 1, 639 [Google Scholar]
  73. Vieth, S., Torda, A. E., Asper, M., Schmitz, H. & Gunther, S.(2004). Sequence analysis of L RNA of Lassa virus. Virology 318, 153–168.[CrossRef] [Google Scholar]
  74. Whitton, J. L., Tishon, A., Lewicki, H., Gebhard, J., Cook, T., Salvato, M., Joly, E. & Oldstone, M. B.(1989). Molecular analyses of a five-amino-acid cytotoxic T-lymphocyte (CTL) epitope: an immunodominant region which induces nonreciprocal CTL cross-reactivity. J Virol 63, 4303–4310. [Google Scholar]
  75. Wilson, S. M. & Clegg, J. C.(1991). Sequence analysis of the S RNA of the African arenavirus Mopeia: an unusual secondary structure feature in the intergenic region. Virology 180, 543–552.[CrossRef] [Google Scholar]
  76. Wulff, H., McIntosh, B. M., Hamner, D. B. & Johnson, K. M.(1977). Isolation of an arenavirus closely related to Lassa virus from Mastomys natalensis in south-east Africa. Bull World Health Organ 55, 441–444. [Google Scholar]
  77. York, J., Romanowski, V., Lu, M. & Nunberg, J. H.(2004). The signal peptide of the Junín arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1–G2 complex. J Virol 78, 10783–10792.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 5, pp. 1315–1324

Bayesian analyses of Merino Walk virus (MWV), inferred based on the NP nucleotide sequence.

Motifs in the Z protein of MWV conserved with other arenaviruses. The shortened Z protein of MWV contains neither conserved late domain.

Simplot of L segment (a) and motifs (b) in region III (pre-A, A, B, C, D, E) of MWV conserved with other Old World arenaviruses.

Motifs, variable region and zinc-finger domain in the nucleocapsid protein of MWV conserved with other arenaviruses.

Simplot of the M segment (a) with other Old World arenaviruses and conserved motifs (b) among the signal sequence, G1 and G2 proteins.

[ Single PDF file] (711 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error