1887

Abstract

Both entero- and cardioviruses have been shown to suppress host mRNA synthesis. Enteroviruses are also known to inhibit the activity of rRNA genes, whereas this ability of cardioviruses is under debate. This study reported that mengovirus (a cardiovirus) suppressed rRNA synthesis but less efficiently than poliovirus (an enterovirus). In contrast to poliovirus infection, the incorporation of BrUTP, fluorouridine and [C]uridine in rRNA precursors was observed even during the late stages of mengovirus infection, although at a significantly reduced level. The cleavage of TATA-binding protein, considered to be one of the central events in poliovirus-induced transcription shutoff, was not detected in mengovirus-infected cells, indicating a difference in the mechanisms of host RNA synthesis inhibition caused by these viruses. The results also showed that functional leader protein is redundant for the suppression of host RNA synthesis by cardiovirus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.017723-0
2010-05-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/5/1239.html?itemId=/content/journal/jgv/10.1099/vir.0.017723-0&mimeType=html&fmt=ahah

References

  1. Aminev, A. G., Amineva, S. P. & Palmenberg, A. C. ( 2003; ). Encephalomyocarditis virus (EMCV) proteins 2A and 3BCD localize to nuclei and inhibit cellular mRNA transcription but not rRNA transcription. Virus Res 95, 59–73.[CrossRef]
    [Google Scholar]
  2. Apriletti, J. W. & Penhoet, E. E. ( 1978; ). Cellular RNA synthesis in normal and mengovirus-infected L-929 cells. J Biol Chem 253, 603–611.
    [Google Scholar]
  3. Armer, H., Moffat, K., Wileman, T., Belsham, G. J., Jackson, T., Duprex, W. P., Ryan, M. & Monaghan, P. ( 2008; ). Foot-and-mouth disease virus, but not bovine enterovirus, targets the host cell cytoskeleton via the nonstructural protein 3Cpro. J Virol 82, 10556–10566.[CrossRef]
    [Google Scholar]
  4. Baltimore, D. & Franklin, R. M. ( 1962; ). The effect of mengovirus infection on the activity of the DNA-dependent RNA polymerase of L-cells. Proc Natl Acad Sci U S A 48, 1383–1390.[CrossRef]
    [Google Scholar]
  5. Baltimore, D., Franklin, R. M. & Callender, J. ( 1963; ). Mengovirus-induced inhibition of host ribonucleic acid and protein synthesis. Biochim Biophys Acta 76, 425–430.[CrossRef]
    [Google Scholar]
  6. Banerjee, R., Weidman, M. K., Navarro, S., Comai, L. & Dasgupta, A. ( 2005; ). Modifications of both selectivity factor and upstream binding factor contribute to poliovirus-mediated inhibition of RNA polymerase I transcription. J Gen Virol 86, 2315–2322.[CrossRef]
    [Google Scholar]
  7. Bardina, M. V., Lidsky, P. V., Sheval, E. V., Fominykh, K. V., van Kuppeveld, F. J., Polyakov, V. Y. & Agol, V. I. ( 2009; ). Mengovirus-induced rearrangement of the nuclear pore complex: hijacking cellular phosphorylation machinery. J Virol 83, 3150–3161.[CrossRef]
    [Google Scholar]
  8. Belov, G. A., Romanova, L. I., Tolskaya, E. A., Kolesnikova, M. S., Lazebnik, Y. A. & Agol, V. I. ( 2003; ). The major apoptotic pathway activated and suppressed by poliovirus. J Virol 77, 45–56.[CrossRef]
    [Google Scholar]
  9. Belov, G. A., Lidsky, P. V., Mikitas, O. V., Egger, D., Lukyanov, K. A., Bienz, K. & Agol, V. I. ( 2004; ). Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores. J Virol 78, 10166–10177.[CrossRef]
    [Google Scholar]
  10. Blom, N., Hansen, J., Blaas, D. & Brunak, S. ( 1996; ). Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5, 2203–2216.[CrossRef]
    [Google Scholar]
  11. Burgon, T. B., Jenkins, J. A., Deitz, S. B., Spagnolo, J. F. & Kirkegaard, K. ( 2009; ). Bypass suppression of small-plaque phenotypes by a mutation in poliovirus 2A that enhances apoptosis. J Virol 83, 10129–10139.[CrossRef]
    [Google Scholar]
  12. Castello, A., Izquierdo, J. M., Welnowska, E. & Carrasco, L. ( 2009; ). RNA nuclear export is blocked by poliovirus 2A protease and is concomitant with nucleoporin cleavage. J Cell Sci 122, 3799–3809.[CrossRef]
    [Google Scholar]
  13. Chinsangaram, J., Piccone, M. E. & Grubman, M. J. ( 1999; ). Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon. J Virol 73, 9891–9898.
    [Google Scholar]
  14. Clark, M. E., Lieberman, P. M., Berk, A. J. & Dasgupta, A. ( 1993; ). Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol Cell Biol 13, 1232–1237.
    [Google Scholar]
  15. Contreras, G., Summers, D. F., Maizel, J. V. & Ehrenfeld, E. ( 1973; ). HeLa cell nucleolar RNA synthesis after poliovirus infection. Virology 53, 120–129.[CrossRef]
    [Google Scholar]
  16. Das, S. & Dasgupta, A. ( 1993; ). Identification of the cleavage site and determinants required for poliovirus 3CPro-catalyzed cleavage of human TATA-binding transcription factor TBP. J Virol 67, 3326–3331.
    [Google Scholar]
  17. Davies, M. V., Pelletier, J., Meerovitch, K., Sonenberg, N. & Kaufman, R. J. ( 1991; ). The effect of poliovirus proteinase 2Apro expression on cellular metabolism. Inhibition of DNA replication, RNA polymerase II transcription, and translation. J Biol Chem 266, 14714–14720.
    [Google Scholar]
  18. Delhaye, S., van Pesch, V. & Michiels, T. ( 2004; ). The leader protein of Theiler's virus interferes with nucleocytoplasmic trafficking of cellular proteins. J Virol 78, 4357–4362.[CrossRef]
    [Google Scholar]
  19. Dodd, D. A., Giddings, T. H., Jr & Kirkegaard, K. ( 2001; ). Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection. J Virol 75, 8158–8165.[CrossRef]
    [Google Scholar]
  20. Etchison, D., Milburn, S. C., Edery, I., Sonenberg, N. & Hershey, J. W. ( 1982; ). Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J Biol Chem 257, 14806–14810.
    [Google Scholar]
  21. Fradkin, L. G., Yoshinaga, S. K., Berk, A. J. & Dasgupta, A. ( 1987; ). Inhibition of host cell RNA polymerase III-mediated transcription by poliovirus: inactivation of specific transcription factors. Mol Cell Biol 7, 3880–3887.
    [Google Scholar]
  22. Gingras, A. C., Svitkin, Y., Belsham, G. J., Pause, A. & Sonenberg, N. ( 1996; ). Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc Natl Acad Sci U S A 93, 5578–5583.[CrossRef]
    [Google Scholar]
  23. Gustin, K. E. & Sarnow, P. ( 2001; ). Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J 20, 240–249.[CrossRef]
    [Google Scholar]
  24. Han, J. Q., Townsend, H. L., Jha, B. K., Paranjape, J. M., Silverman, R. H. & Barton, D. J. ( 2007; ). A phylogenetically conserved RNA structure in the poliovirus open reading frame inhibits the antiviral endoribonuclease RNase L. J Virol 81, 5561–5572.[CrossRef]
    [Google Scholar]
  25. Hato, S. V., Ricour, C., Schulte, B. M., Lanke, K. H., de Bruijni, M., Zoll, J., Melchers, W. J., Michiels, T. & van Kuppeveld, F. J. ( 2007; ). The mengovirus leader protein blocks interferon-α/β gene transcription and inhibits activation of interferon regulatory factor 3. Cell Microbiol 9, 2921–2930.[CrossRef]
    [Google Scholar]
  26. Holland, J. J. & Peterson, J. A. ( 1964; ). Nucleic acid and protein synthesis during poliovirus infection of human cells. J Mol Biol 8, 556–575.[CrossRef]
    [Google Scholar]
  27. Jordan, E. G. & McGovern, J. H. ( 1981; ). The quantitative relationship of the fibrillar centres and other nucleolar components to changes in growth conditions, serum deprivation and low doses of actinomycin D in cultured diploid human fibroblasts (strain MRC-5). J Cell Sci 52, 373–389.
    [Google Scholar]
  28. Koberna, K., Stanek, D., Malinsky, J., Ctrnacta, V., Cermanova, S., Novotna, J., Kopsky, V. & Raska, I. ( 2000; ). In situ fluorescence visualization of bromouridine incorporated into newly transcribed nucleolar RNA. Acta Histochem 102, 15–20.[CrossRef]
    [Google Scholar]
  29. Krausslich, H. G., Nicklin, M. J., Toyoda, H., Etchison, D. & Wimmer, E. ( 1987; ). Poliovirus proteinase 2A induces cleavage of eucaryotic initiation factor 4F polypeptide p220. J Virol 61, 2711–2718.
    [Google Scholar]
  30. Lidsky, P. V., Hato, S., Bardina, M. V., Aminev, A. G., Palmenberg, A. C., Sheval, E. V., Polyakov, V. Y., van Kuppeveld, F. J. & Agol, V. I. ( 2006; ). Nucleocytoplasmic traffic disorder induced by cardioviruses. J Virol 80, 2705–2717.[CrossRef]
    [Google Scholar]
  31. Margottin, F., Dujardin, G., Gerard, M., Egly, J. M., Huet, J. & Sentenac, A. ( 1991; ). Participation of the TATA factor in transcription of the yeast U6 gene by RNA polymerase C. Science 251, 424–426.[CrossRef]
    [Google Scholar]
  32. Morrison, J. M. & Racaniello, V. R. ( 2009; ). Proteinase 2Apro is essential for enterovirus replication in type I interferon-treated cells. J Virol 83, 4412–4422.[CrossRef]
    [Google Scholar]
  33. Neznanov, N., Kondratova, A., Chumakov, K. M., Angres, B., Zhumabayeva, B., Agol, V. I. & Gudkov, A. V. ( 2001; ). Poliovirus protein 3A inhibits tumor necrosis factor (TNF)-induced apoptosis by eliminating the TNF receptor from the cell surface. J Virol 75, 10409–10420.[CrossRef]
    [Google Scholar]
  34. Parks, G. D., Baker, J. C. & Palmenberg, A. C. ( 1989; ). Proteolytic cleavage of encephalomyocarditis virus capsid region substrates by precursors to the 3C enzyme. J Virol 63, 1054–1058.
    [Google Scholar]
  35. Plagemann, P. G. ( 1968; ). Mengovirus replication in Novikoff rat hepatoma and mouse L cells: effects on synthesis of host-cell macromolecules and virus-specific synthesis of ribonucleic acid. J Virol 2, 461–473.[CrossRef]
    [Google Scholar]
  36. Porter, F. W., Bochkov, Y. A., Albee, A. J., Wiese, C. & Palmenberg, A. C. ( 2006; ). A picornavirus protein interacts with Ran-GTPase and disrupts nucleocytoplasmic transport. Proc Natl Acad Sci U S A 103, 12417–12422.[CrossRef]
    [Google Scholar]
  37. Ricour, C., Delhaye, S., Hato, S. V., Olenyik, T. D., Michel, B., van Kuppeveld, F. J., Gustin, K. E. & Michiels, T. ( 2009; ). Inhibition of mRNA export and dimerization of interferon regulatory factor 3 by Theiler's virus leader protein. J Gen Virol 90, 177–186.[CrossRef]
    [Google Scholar]
  38. Romanova, L. I., Lidsky, P. V., Kolesnikova, M. S., Fominykh, K. V., Gmyl, A. P., Sheval, E. V., Hato, S. V., van Kuppeveld, F. J. & Agol, V. I. ( 2009; ). Antiapoptotic activity of the cardiovirus leader protein, a viral “security” protein. J Virol 83, 7273–7284.[CrossRef]
    [Google Scholar]
  39. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Svitkin, Y. V., Herdy, B., Costa-Mattioli, M., Gingras, A. C., Raught, B. & Sonenberg, N. ( 2005; ). Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol Cell Biol 25, 10556–10565.[CrossRef]
    [Google Scholar]
  41. Tolskaya, E. A., Romanova, L. I., Kolesnikova, M. S., Ivannikova, T. A., Smirnova, E. A., Raikhlin, N. T. & Agol, V. I. ( 1995; ). Apoptosis-inducing and apoptosis-preventing functions of poliovirus. J Virol 69, 1181–1189.
    [Google Scholar]
  42. Ventoso, I., Barco, A. & Carrasco, L. ( 1998; ). Mutational analysis of poliovirus 2Apro. Distinct inhibitory functions of 2Apro on translation and transcription. J Biol Chem 273, 27960–27967.[CrossRef]
    [Google Scholar]
  43. Weidman, M. K., Yalamanchili, P., Ng, B., Tsai, W. & Dasgupta, A. ( 2001; ). Poliovirus 3C protease-mediated degradation of transcriptional activator p53 requires a cellular activity. Virology 291, 260–271.[CrossRef]
    [Google Scholar]
  44. Weidman, M. K., Sharma, R., Raychaudhuri, S., Kundu, P., Tsai, W. & Dasgupta, A. ( 2003; ). The interaction of cytoplasmic RNA viruses with the nucleus. Virus Res 95, 75–85.[CrossRef]
    [Google Scholar]
  45. Williams, C. H., Panayiotou, M., Girling, G. D., Peard, C. I., Oikarinen, S., Hyoty, H. & Stanway, G. ( 2009; ). Evolution and conservation in human parechovirus genomes. J Gen Virol 90, 1702–1712.[CrossRef]
    [Google Scholar]
  46. Yalamanchili, P., Harris, K., Wimmer, E. & Dasgupta, A. ( 1996; ). Inhibition of basal transcription by poliovirus: a virus-encoded protease (3Cpro) inhibits formation of TBP–TATA box complex in vitro. J Virol 70, 2922–2929.
    [Google Scholar]
  47. Yalamanchili, P., Banerjee, R. & Dasgupta, A. ( 1997a; ). Poliovirus-encoded protease 2APro cleaves the TATA-binding protein but does not inhibit host cell RNA polymerase II transcription in vitro. J Virol 71, 6881–6886.
    [Google Scholar]
  48. Yalamanchili, P., Datta, U. & Dasgupta, A. ( 1997b; ). Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. J Virol 71, 1220–1226.
    [Google Scholar]
  49. Yalamanchili, P., Weidman, K. & Dasgupta, A. ( 1997c; ). Cleavage of transcriptional activator Oct-1 by poliovirus encoded protease 3Cpro. Virology 239, 176–185.[CrossRef]
    [Google Scholar]
  50. Zatsepina, O. V., Chelidze, P. V. & Chentsov, Y. S. ( 1988; ). Changes in the number and volume of fibrillar centres with the inactivation of nucleoli at erythropoiesis. J Cell Sci 91, 439–448.
    [Google Scholar]
  51. Zoll, J., Galama, J. M., van Kuppeveld, F. J. & Melchers, W. J. ( 1996; ). Mengovirus leader is involved in the inhibition of host cell protein synthesis. J Virol 70, 4948–4952.
    [Google Scholar]
  52. Zoll, J., Melchers, W. J., Galama, J. M. & van Kuppeveld, F. J. ( 2002; ). The mengovirus leader protein suppresses alpha/beta interferon production by inhibition of the iron/ferritin-mediated activation of NF-κB. J Virol 76, 9664–9672.[CrossRef]
    [Google Scholar]
  53. Zomerdijk, J. C., Beckmann, H., Comai, L. & Tjian, R. ( 1994; ). Assembly of transcriptionally active RNA polymerase I initiation factor SL1 from recombinant subunits. Science 266, 2015–2018.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.017723-0
Loading
/content/journal/jgv/10.1099/vir.0.017723-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error