1887

Abstract

The negative-sense RNA genome of influenza A virus is composed of eight segments, which encode 12 proteins between them. At the final stage of viral assembly, these genomic virion (v)RNAs are incorporated into the virion as it buds from the apical plasma membrane of the cell. Genome segmentation confers evolutionary advantages on the virus, but also poses a problem during virion assembly as at least one copy of each of the eight segments is required to produce a fully infectious virus particle. Historically, arguments have been presented in favour of a specific packaging mechanism that ensures incorporation of a full genome complement, as well as for an alternative model in which segments are chosen at random but packaged in sufficient numbers to ensure that a reasonable proportion of virions are viable. The question has seen a resurgence of interest in recent years leading to a consensus that the vast majority of virions contain no more than eight segments and that a specific mechanism does indeed function to select one copy of each vRNA. This review summarizes work leading to this conclusion. In addition, we describe recent progress in identifying the specific packaging signals and discuss likely mechanisms by which these RNA elements might operate.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.017608-0
2010-02-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/2/313.html?itemId=/content/journal/jgv/10.1099/vir.0.017608-0&mimeType=html&fmt=ahah

References

  1. Akkina, R. K., Chambers, T. M. & Nayak, D. P. ( 1984; ). Mechanism of interference by defective-interfering particles of influenza virus: differential reduction of intracellular synthesis of specific polymerase proteins. Virus Res 1, 687–702.[CrossRef]
    [Google Scholar]
  2. Almeida, J. D. & Brand, C. M. ( 1975; ). A morphological study of the internal component of influenza virus. J Gen Virol 27, 313–318.[CrossRef]
    [Google Scholar]
  3. Apostolov, K. & Flewett, T. H. ( 1969; ). Further observations on the structure of influenza viruses A and C. J Gen Virol 4, 365–370.[CrossRef]
    [Google Scholar]
  4. Bachi, T., Gerhard, W., Lindenmann, J. & Muhlethaler, K. ( 1969; ). Morphogenesis of influenza A virus in Ehrlich ascites tumor cells as revealed by thin-sectioning and freeze-etching. J Virol 4, 769–776.
    [Google Scholar]
  5. Ball, L. A. ( 2007; ). Virus replication strategies. In Fields Virology, 5th edn, pp. 119–140. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  6. Bancroft, C. T. & Parslow, T. G. ( 2002; ). Evidence for segment-nonspecific packaging of the influenza A virus genome. J Virol 76, 7133–7139.[CrossRef]
    [Google Scholar]
  7. Barry, R. D. ( 1961; ). The multiplication of influenza virus. II. Multiplicity reactivation of ultraviolet irradiated virus. Virology 14, 398–405.[CrossRef]
    [Google Scholar]
  8. Belshaw, R., Gardner, A., Rambaut, A. & Pybus, O. G. ( 2008; ). Pacing a small cage: mutation and RNA viruses. Trends Ecol Evol 23, 188–193.[CrossRef]
    [Google Scholar]
  9. Bergmann, M. & Muster, T. ( 1995; ). The relative amount of an influenza A virus segment present in the viral particle is not affected by a reduction in replication of that segment. J Gen Virol 76, 3211–3215.[CrossRef]
    [Google Scholar]
  10. Bergmann, M. & Muster, T. ( 1996; ). Mutations in the nonconserved noncoding sequences of the influenza A virus segments affect viral vRNA formation. Virus Res 44, 23–31.[CrossRef]
    [Google Scholar]
  11. Birch-Andersen, A. & Paucker, K. ( 1959; ). Studies on the structure of influenza virus. II. Ultrathin sections of infectious and noninfectious particles. Virology 8, 21–40.[CrossRef]
    [Google Scholar]
  12. Booy, F. P., Ruigrok, R. W. & van Bruggen, E. F. ( 1985; ). Electron microscopy of influenza virus. A comparison of negatively stained and ice-embedded particles. J Mol Biol 184, 667–676.[CrossRef]
    [Google Scholar]
  13. Boulo, S., Akarsu, H., Ruigrok, R. W. & Baudin, F. ( 2007; ). Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. Virus Res 124, 12–21.[CrossRef]
    [Google Scholar]
  14. Brodersen, D. E., Clemons, W. M., Jr, Carter, A. P., Wimberly, B. T. & Ramakrishnan, V. ( 2002; ). Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. J Mol Biol 316, 725–768.[CrossRef]
    [Google Scholar]
  15. Chao, L., Tran, T. T. & Tran, T. T. ( 1997; ). The advantage of sex in the RNA virus Φ6. Genetics 147, 953–959.
    [Google Scholar]
  16. Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., Basta, S., O'Neill, R., Schickli, J. & other authors ( 2001; ). A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7, 1306–1312.[CrossRef]
    [Google Scholar]
  17. Chen, B. J., Leser, G. P., Morita, E. & Lamb, R. A. ( 2007; ). Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J Virol 81, 7111–7123.[CrossRef]
    [Google Scholar]
  18. Cheung, T. K. & Poon, L. L. ( 2007; ). Biology of influenza a virus. Ann N Y Acad Sci 1102, 1–25.[CrossRef]
    [Google Scholar]
  19. Coloma, R., Valpuesta, J. M., Arranz, R., Carrascosa, J. L., Ortin, J. & Martin-Benito, J. ( 2009; ). The structure of a biologically active influenza virus ribonucleoprotein complex. PLoS Pathog 5, e1000491 [CrossRef]
    [Google Scholar]
  20. Compans, R. W. & Dimmock, N. J. ( 1969; ). An electron microscopic study of single-cycle infection of chick embryo fibroblasts by influenza virus. Virology 39, 499–515.[CrossRef]
    [Google Scholar]
  21. Compans, R. W., Dimmock, N. J. & Meier-Ewart, H. ( 1970; ). In The Biology of Large RNA Viruses, pp. 87–108. Edited by R. D. Barry & B. W. J. Mahy. New York: Academic Press.
  22. Compans, R. W., Content, J. & Duesberg, P. H. ( 1972; ). Structure of the ribonucleoprotein of influenza virus. J Virol 10, 795–800.
    [Google Scholar]
  23. Davis, A. R. & Nayak, D. P. ( 1979; ). Sequence relationships among defective interfering influenza viral RNAs. Proc Natl Acad Sci U S A 76, 3092–3096.[CrossRef]
    [Google Scholar]
  24. Davis, A. R., Hiti, A. L. & Nayak, D. P. ( 1980; ). Influenza defective interfering viral RNA is formed by internal deletion of genomic RNA. Proc Natl Acad Sci U S A 77, 215–219.[CrossRef]
    [Google Scholar]
  25. de Wit, E., Spronken, M. I., Rimmelzwaan, G. F., Osterhaus, A. D. & Fouchier, R. A. ( 2006; ). Evidence for specific packaging of the influenza A virus genome from conditionally defective virus particles lacking a polymerase gene. Vaccine 24, 6647–6650.[CrossRef]
    [Google Scholar]
  26. Donald, H. B. & Isaacs, A. ( 1954; ). Counts of influenza virus particles. J Gen Microbiol 10, 457–464.[CrossRef]
    [Google Scholar]
  27. Dos Santos Afonso, E., Escriou, N., Leclercq, I., van der Werf, S. & Naffakh, N. ( 2005; ). The generation of recombinant influenza A viruses expressing a PB2 fusion protein requires the conservation of a packaging signal overlapping the coding and noncoding regions at the 5′ end of the PB2 segment. Virology 341, 34–46.[CrossRef]
    [Google Scholar]
  28. Duesberg, P. H. ( 1968; ). The RNA of influenza virus. Proc Natl Acad Sci U S A 59, 930–937.[CrossRef]
    [Google Scholar]
  29. Duesberg, P. H. ( 1969; ). Distinct subunits of the ribonucleoprotein of influenza virus. J Mol Biol 42, 485–499.[CrossRef]
    [Google Scholar]
  30. Dugan, V. G., Chen, R., Spiro, D. J., Sengamalay, N., Zaborsky, J., Ghedin, E., Nolting, J., Swayne, D. E., Runstadler, J. A. & other authors ( 2008; ). The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog 4, e1000076 [CrossRef]
    [Google Scholar]
  31. Duhaut, S. D. & Dimmock, N. J. ( 1998; ). Heterologous protection of mice from a lethal human H1N1 influenza A virus infection by H3N8 equine defective interfering virus: comparison of defective RNA sequences isolated from the DI inoculum and mouse lung. Virology 248, 241–253.[CrossRef]
    [Google Scholar]
  32. Duhaut, S. & Dimmock, N. J. ( 2000; ). Approximately 150 nucleotides from the 5′ end of an influenza A segment 1 defective virion RNA are needed for genome stability during passage of defective virus in infected cells. Virology 275, 278–285.[CrossRef]
    [Google Scholar]
  33. Duhaut, S. D. & Dimmock, N. J. ( 2002; ). Defective segment 1 RNAs that interfere with production of infectious influenza A virus require at least 150 nucleotides of 5′ sequence: evidence from a plasmid-driven system. J Gen Virol 83, 403–411.
    [Google Scholar]
  34. Duhaut, S. D. & McCauley, J. W. ( 1996; ). Defective RNAs inhibit the assembly of influenza virus genome segments in a segment-specific manner. Virology 216, 326–337.[CrossRef]
    [Google Scholar]
  35. Enami, M., Sharma, G., Benham, C. & Palese, P. ( 1991; ). An influenza virus containing nine different RNA segments. Virology 185, 291–298.[CrossRef]
    [Google Scholar]
  36. Fujii, Y., Goto, H., Watanabe, T., Yoshida, T. & Kawaoka, Y. ( 2003; ). Selective incorporation of influenza virus RNA segments into virions. Proc Natl Acad Sci U S A 100, 2002–2007.[CrossRef]
    [Google Scholar]
  37. Fujii, K., Fujii, Y., Noda, T., Muramoto, Y., Watanabe, T., Takada, A., Goto, H., Horimoto, T. & Kawaoka, Y. ( 2005; ). Importance of both the coding and the segment-specific noncoding regions of the influenza A virus NS segment for its efficient incorporation into virions. J Virol 79, 3766–3774.[CrossRef]
    [Google Scholar]
  38. Fujii, K., Ozawa, M., Iwatsuki-Horimoto, K., Horimoto, T. & Kawaoka, Y. ( 2009; ). The incorporation of influenza A virus genome segments does not absolutely require wild-type sequences. J Gen Virol 90, 1734–1740.[CrossRef]
    [Google Scholar]
  39. Gao, Q. & Palese, P. ( 2009; ). Rewiring the RNAs of influenza virus to prevent reassortment. Proc Natl Acad Sci U S A 106, 15891–15896.[CrossRef]
    [Google Scholar]
  40. Gao, Q., Brydon, E. W. & Palese, P. ( 2008; ). A seven-segmented influenza A virus expressing the influenza C virus glycoprotein HEF. J Virol 82, 6419–6426.[CrossRef]
    [Google Scholar]
  41. Garten, R. J., Davis, C. T., Russell, C. A., Shu, B., Lindstrom, S., Balish, A., Sessions, W. M., Xu, X., Skepner, E. & other authors ( 2009; ). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325, 197–201.[CrossRef]
    [Google Scholar]
  42. Ghedin, E., Fitch, A., Boyne, A., Griesemer, S., DePasse, J., Bera, J., Zhang, X., Halpin, R. A., Smit, M. & other authors ( 2009; ). Mixed infection and the genesis of influenza virus diversity. J Virol 83, 8832–8841.[CrossRef]
    [Google Scholar]
  43. Giannecchini, S., Clausi, V., Nosi, D. & Azzi, A. ( 2009; ). Oligonucleotides derived from the packaging signal at the 5′ end of the viral PB2 segment specifically inhibit influenza virus in vitro. Arch Virol 154, 821–832.[CrossRef]
    [Google Scholar]
  44. Gog, J. R., Rimmelzwaan, G. F., Osterhaus, A. D. & Grenfell, B. T. ( 2003; ). Population dynamics of rapid fixation in cytotoxic T lymphocyte escape mutants of influenza A. Proc Natl Acad Sci U S A 100, 11143–11147.[CrossRef]
    [Google Scholar]
  45. Gog, J. R., Afonso Edos, S., Dalton, R. M., Leclercq, I., Tiley, L., Elton, D., von Kirchbach, J. C., Naffakh, N., Escriou, N. & Digard, P. ( 2007; ). Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Res 35, 1897–1907.[CrossRef]
    [Google Scholar]
  46. Greatorex, J. ( 2004; ). The retroviral RNA dimer linkage: different structures may reflect different roles. Retrovirology 1, 22 [CrossRef]
    [Google Scholar]
  47. Harris, A., Cardone, G., Winkler, D. C., Heymann, J. B., Brecher, M., White, J. M. & Steven, A. C. ( 2006; ). Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci U S A 103, 19123–19127.[CrossRef]
    [Google Scholar]
  48. Hatada, E., Hasegawa, M., Mukaigawa, J., Shimizu, K. & Fukuda, R. ( 1989; ). Control of influenza virus gene expression: quantitative analysis of each viral RNA species in infected cells. J Biochem 105, 537–546.
    [Google Scholar]
  49. Hatchette, T. F., Walker, D., Johnson, C., Baker, A., Pryor, S. P. & Webster, R. G. ( 2004; ). Influenza A viruses in feral Canadian ducks: extensive reassortment in nature. J Gen Virol 85, 2327–2337.[CrossRef]
    [Google Scholar]
  50. Heggeness, M. H., Smith, P. R., Ulmanen, I., Krug, R. M. & Choppin, P. W. ( 1982; ). Studies on the helical nucleocapsid of influenza virus. Virology 118, 466–470.[CrossRef]
    [Google Scholar]
  51. Hirst, G. K. ( 1962; ). Genetic recombination with Newcastle disease virus, polioviruses, and influenza. Cold Spring Harb Symp Quant Biol 27, 303–309.[CrossRef]
    [Google Scholar]
  52. Hirst, G. K. ( 1973; ). Mechanism of influenza recombination. I. Factors influencing recombination rates between temperature-sensitive mutants of strain WSN and the classification of mutants into complementation–recombination groups. Virology 55, 81–93.[CrossRef]
    [Google Scholar]
  53. Hirst, G. K. & Pons, M. W. ( 1973; ). Mechanism of influenza recombination. II. Virus aggregation and its effect on plaque formation by so-called noninfective virus. Virology 56, 620–631.[CrossRef]
    [Google Scholar]
  54. Holbrook, S. R. ( 2005; ). RNA structure: the long and the short of it. Curr Opin Struct Biol 15, 302–308.[CrossRef]
    [Google Scholar]
  55. Hughes, M. T., Matrosovich, M., Rodgers, M. E., McGregor, M. & Kawaoka, Y. ( 2000; ). Influenza A viruses lacking sialidase activity can undergo multiple cycles of replication in cell culture, eggs, or mice. J Virol 74, 5206–5212.[CrossRef]
    [Google Scholar]
  56. Huiskonen, J. T., de Haas, F., Bubeck, D., Bamford, D. H., Fuller, S. D. & Butcher, S. J. ( 2006; ). Structure of the bacteriophage Φ6 nucleocapsid suggests a mechanism for sequential RNA packaging. Structure 14, 1039–1048.[CrossRef]
    [Google Scholar]
  57. Hutchinson, E. C., Curran, M. D., Read, E. K., Gog, J. R. & Digard, P. ( 2008; ). Mutational analysis of cis-acting RNA signals in segment 7 of influenza A virus. J Virol 82, 11869–11879.[CrossRef]
    [Google Scholar]
  58. Hutchinson, E. C., Wise, H. M., Kudryavtseva, K., Curran, M. D. & Digard, P. ( 2009; ). Characterisation of influenza A viruses with mutations in segment 5 packaging signals. Vaccine 27, 6270–6275.[CrossRef]
    [Google Scholar]
  59. Isaacs, A. & Donald, H. B. ( 1955; ). Particle counts of haemagglutinating viruses. J Gen Microbiol 12, 241–247.[CrossRef]
    [Google Scholar]
  60. Jennings, P. A., Finch, J. T., Winter, G. & Robertson, J. S. ( 1983; ). Does the higher order structure of the influenza virus ribonucleoprotein guide sequence rearrangements in influenza viral RNA? Cell 34, 619–627.[CrossRef]
    [Google Scholar]
  61. Kingsbury, D. W. ( 1970; ). Replication and functions of myxovirus ribonucleic acids. Prog Med Virol 12, 49–77.
    [Google Scholar]
  62. Kingsbury, D. W. & Webster, R. G. ( 1969; ). Some properties of influenza virus nucleocapsids. J Virol 4, 219–225.
    [Google Scholar]
  63. Klein, D. J., Moore, P. B. & Steitz, T. A. ( 2004; ). The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J Mol Biol 340, 141–177.[CrossRef]
    [Google Scholar]
  64. Krug, R. M. ( 1971; ). Influenza viral RNPs newly synthesized during the latent period of viral growth in MDCK cells. Virology 44, 125–136.[CrossRef]
    [Google Scholar]
  65. Kuiken, T., Holmes, E. C., McCauley, J., Rimmelzwaan, G. F., Williams, C. S. & Grenfell, B. T. ( 2006; ). Host species barriers to influenza virus infections. Science 312, 394–397.[CrossRef]
    [Google Scholar]
  66. Lakadamyali, M., Rust, M. J., Babcock, H. P. & Zhuang, X. ( 2003; ). Visualizing infection of individual influenza viruses. Proc Natl Acad Sci U S A 100, 9280–9285.[CrossRef]
    [Google Scholar]
  67. Lamb, R. A. & Choppin, P. W. ( 1983; ). The gene structure and replication of influenza virus. Annu Rev Biochem 52, 467–506.[CrossRef]
    [Google Scholar]
  68. Laver, W. G. & Downie, J. C. ( 1976; ). Influenza virus recombination. I. Matrix protein markers and segregation during mixed infections. Virology 70, 105–117.[CrossRef]
    [Google Scholar]
  69. Lazarowitz, S. D. ( 2007; ). Plant viruses. In Fields Virology, 5th edn, pp. 641–705. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  70. Liang, Y., Hong, Y. & Parslow, T. G. ( 2005; ). cis-Acting packaging signals in the influenza virus PB1, PB2, and PA genomic RNA segments. J Virol 79, 10348–10355.[CrossRef]
    [Google Scholar]
  71. Liang, Y., Huang, T., Ly, H. & Parslow, T. G. ( 2008; ). Mutational analyses of packaging signals in influenza virus PA, PB1, and PB2 genomic RNA segments. J Virol 82, 229–236.[CrossRef]
    [Google Scholar]
  72. Liu, C. & Air, G. M. ( 1993; ). Selection and characterization of a neuraminidase-minus mutant of influenza virus and its rescue by cloned neuraminidase genes. Virology 194, 403–407.[CrossRef]
    [Google Scholar]
  73. Lubeck, M. D., Palese, P. & Schulman, J. L. ( 1979; ). Nonrandom association of parental genes in influenza A virus recombinants. Virology 95, 269–274.[CrossRef]
    [Google Scholar]
  74. Luo, G., Bergmann, M., Garcia-Sastre, A. & Palese, P. ( 1992; ). Mechanism of attenuation of a chimeric influenza A/B transfectant virus. J Virol 66, 4679–4685.
    [Google Scholar]
  75. Luque, D., Rivas, G., Alfonso, C., Carrascosa, J. L., Rodriguez, J. F. & Caston, J. R. ( 2009; ). Infectious bursal disease virus is an icosahedral polyploid dsRNA virus. Proc Natl Acad Sci U S A 106, 2148–2152.[CrossRef]
    [Google Scholar]
  76. Luytjes, W., Krystal, M., Enami, M., Parvin, J. D. & Palese, P. ( 1989; ). Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59, 1107–1113.[CrossRef]
    [Google Scholar]
  77. Marsh, G. A., Hatami, R. & Palese, P. ( 2007; ). Specific residues of the influenza A virus hemagglutinin viral RNA are important for efficient packaging into budding virions. J Virol 81, 9727–9736.[CrossRef]
    [Google Scholar]
  78. Marsh, G. A., Rabadan, R., Levine, A. J. & Palese, P. ( 2008; ). Highly conserved regions of influenza A virus polymerase gene segments are critical for efficient viral RNA packaging. J Virol 82, 2295–2304.[CrossRef]
    [Google Scholar]
  79. McGeoch, D., Fellner, P. & Newton, C. ( 1976; ). Influenza virus genome consists of eight distinct RNA species. Proc Natl Acad Sci U S A 73, 3045–3049.[CrossRef]
    [Google Scholar]
  80. Mindich, L. ( 2004; ). Packaging, replication and recombination of the segmented genome of bacteriophage Φ6 and its relatives. Virus Res 101, 83–92.[CrossRef]
    [Google Scholar]
  81. Morgan, C., Rose, H. M. & Moore, D. H. ( 1956; ). Structure and development of viruses observed in the electron microscope. III. Influenza virus. J Exp Med 104, 171–182.[CrossRef]
    [Google Scholar]
  82. Moss, B. A. & Brownlee, G. G. ( 1981; ). Sequence of DNA complementary to a small RNA segment of influenza virus A/NT/60/68. Nucleic Acids Res 9, 1941–1947.[CrossRef]
    [Google Scholar]
  83. Moya, A., Holmes, E. C. & Gonzalez-Candelas, F. ( 2004; ). The population genetics and evolutionary epidemiology of RNA viruses. Nat Rev Microbiol 2, 279–288.[CrossRef]
    [Google Scholar]
  84. Muller, H. J. ( 1964; ). The relation of recombination to mutational advance. Mutat Res 106, 2–9.
    [Google Scholar]
  85. Muramoto, Y., Takada, A., Fujii, K., Noda, T., Iwatsuki-Horimoto, K., Watanabe, S., Horimoto, T., Kida, H. & Kawaoka, Y. ( 2006; ). Hierarchy among viral RNA (vRNA) segments in their role in vRNA incorporation into influenza A virions. J Virol 80, 2318–2325.[CrossRef]
    [Google Scholar]
  86. Murti, K. G., Bean, W. J., Jr & Webster, R. G. ( 1980; ). Helical ribonucleoproteins of influenza virus: an electron microscopic analysis. Virology 104, 224–229.[CrossRef]
    [Google Scholar]
  87. Murti, K. G., Webster, R. G. & Jones, I. M. ( 1988; ). Localization of RNA polymerases on influenza viral ribonucleoproteins by immunogold labeling. Virology 164, 562–566.[CrossRef]
    [Google Scholar]
  88. Nakajima, K. & Sugiura, A. ( 1977; ). Three-factor cross of influenza virus. Virology 81, 486–489.[CrossRef]
    [Google Scholar]
  89. Nakajima, K., Ueda, M. & Sugiura, A. ( 1979; ). Origin of small RNA in von Magnus particles of influenza virus. J Virol 29, 1142–1148.
    [Google Scholar]
  90. Nayak, D. P. & Sivasubramanian, N. ( 1983; ). The structure of influenza virus defective interfering (DI) RNAs and their progenitor genes. In Genetics of Influenza Viruses, pp. 255–279. Edited by P. Palese & D. W. Kingsbury. Wien: Springer.
  91. Nayak, D. P., Sivasubramanian, N., Davis, A. R., Cortini, R. & Sung, J. ( 1982; ). Complete sequence analyses show that two defective interfering influenza viral RNAs contain a single internal deletion of a polymerase gene. Proc Natl Acad Sci U S A 79, 2216–2220.[CrossRef]
    [Google Scholar]
  92. Nelson, M. I. & Holmes, E. C. ( 2007; ). The evolution of epidemic influenza. Nat Rev Genet 8, 196–205.[CrossRef]
    [Google Scholar]
  93. Neumann, G. & Hobom, G. ( 1995; ). Mutational analysis of influenza virus promoter elements in vivo. J Gen Virol 76, 1709–1717.[CrossRef]
    [Google Scholar]
  94. Neumann, G., Zobel, A. & Hobom, G. ( 1994; ). RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology 202, 477–479.[CrossRef]
    [Google Scholar]
  95. Neumann, G., Brownlee, G. G., Fodor, E. & Kawaoka, Y. ( 2004; ). Orthomyxovirus replication, transcription, and polyadenylation. Curr Top Microbiol Immunol 283, 121–143.
    [Google Scholar]
  96. Ng, A. K., Zhang, H., Tan, K., Li, Z., Liu, J. H., Chan, P. K., Li, S. M., Chan, W. Y., Au, S. W. & other authors ( 2008; ). Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design. FASEB J 22, 3638–3647.[CrossRef]
    [Google Scholar]
  97. Noble, S. & Dimmock, N. J. ( 1995; ). Characterization of putative defective interfering (DI) A/WSN RNAs isolated from the lungs of mice protected from an otherwise lethal respiratory infection with influenza virus A/WSN (H1N1): a subset of the inoculum DI RNAs. Virology 210, 9–19.[CrossRef]
    [Google Scholar]
  98. Nobusawa, E. & Sato, K. ( 2006; ). Comparison of the mutation rates of human influenza A and B viruses. J Virol 80, 3675–3678.[CrossRef]
    [Google Scholar]
  99. Noda, T., Sagara, H., Yen, A., Takada, A., Kida, H., Cheng, R. H. & Kawaoka, Y. ( 2006; ). Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 439, 490–492.[CrossRef]
    [Google Scholar]
  100. Odagiri, T. & Tashiro, M. ( 1997; ). Segment-specific noncoding sequences of the influenza virus genome RNA are involved in the specific competition between defective interfering RNA and its progenitor RNA segment at the virion assembly step. J Virol 71, 2138–2145.
    [Google Scholar]
  101. Odagiri, T. & Tobita, K. ( 1990; ). Mutation in NS2, a nonstructural protein of influenza A virus, extragenically causes aberrant replication and expression of the PA gene and leads to generation of defective interfering particles. Proc Natl Acad Sci U S A 87, 5988–5992.[CrossRef]
    [Google Scholar]
  102. Odagiri, T., Tominaga, K., Tobita, K. & Ohta, S. ( 1994; ). An amino acid change in the non-structural NS2 protein of an influenza A virus mutant is responsible for the generation of defective interfering (DI) particles by amplifying DI RNAs and suppressing complementary RNA synthesis. J Gen Virol 75, 43–53.[CrossRef]
    [Google Scholar]
  103. Oxford, J. S. & Hockley, D. J. ( 1987; ). Orthomyxoviridae. In Perspectives in Medical Virology. Animal Virus Structure, pp. 213–232. Edited by M. V. Nermut & A. C. Steven. New York: Elsevier.
  104. Ozawa, M., Fujii, K., Muramoto, Y., Yamada, S., Yamayoshi, S., Takada, A., Goto, H., Horimoto, T. & Kawaoka, Y. ( 2007; ). Contributions of two nuclear localization signals of influenza A virus nucleoprotein to viral replication. J Virol 81, 30–41.[CrossRef]
    [Google Scholar]
  105. Ozawa, M., Maeda, J., Iwatsuki-Horimoto, K., Watanabe, S., Goto, H., Horimoto, T. & Kawaoka, Y. ( 2009; ). Nucleotide sequence requirements at the 5′ end of the influenza A virus M RNA segment for efficient virus replication. J Virol 83, 3384–3388.[CrossRef]
    [Google Scholar]
  106. Pons, M. W. & Hirst, G. K. ( 1968; ). Polyacrylamide gel electrophoresis of influenza virus RNA. Virology 34, 385–388.[CrossRef]
    [Google Scholar]
  107. Pons, M. W., Schulze, I. T., Hirst, G. K. & Hauser, R. ( 1969; ). Isolation and characterization of the ribonucleoprotein of influenza virus. Virology 39, 250–259.[CrossRef]
    [Google Scholar]
  108. Portela, A. & Digard, P. ( 2002; ). The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J Gen Virol 83, 723–734.
    [Google Scholar]
  109. Pressing, J. & Reanney, D. C. ( 1984; ). Divided genomes and intrinsic noise. J Mol Evol 20, 135–146.[CrossRef]
    [Google Scholar]
  110. Rambaut, A., Pybus, O. G., Nelson, M. I., Viboud, C., Taubenberger, J. K. & Holmes, E. C. ( 2008; ). The genomic and epidemiological dynamics of human influenza A virus. Nature 453, 615–619.[CrossRef]
    [Google Scholar]
  111. Ruigrok, R. W., Calder, L. J. & Wharton, S. A. ( 1989; ). Electron microscopy of the influenza virus submembranal structure. Virology 173, 311–316.[CrossRef]
    [Google Scholar]
  112. Saelens, X. ( 2008; ). The influenza matrix protein 2 as a vaccine target. Future Virology 3, 167–178.[CrossRef]
    [Google Scholar]
  113. Schmitt, A. P. & Lamb, R. A. ( 2005; ). Influenza virus assembly and budding at the viral budozone. Adv Virus Res 64, 383–416.
    [Google Scholar]
  114. Scholtissek, C., Rohde, W., Harms, E., Rott, R., Orlich, M. & Boschek, C. B. ( 1978; ). A possible partial heterozygote of an influenza A virus. Virology 89, 506–516.[CrossRef]
    [Google Scholar]
  115. Shaw, M. L., Stone, K. L., Colangelo, C. M., Gulcicek, E. E. & Palese, P. ( 2008; ). Cellular proteins in influenza virus particles. PLoS Pathog 4, e1000085 [CrossRef]
    [Google Scholar]
  116. Shinya, K., Fujii, Y., Ito, H., Ito, T. & Kawaoka, Y. ( 2004; ). Characterization of a neuraminidase-deficient influenza A virus as a potential gene delivery vector and a live vaccine. J Virol 78, 3083–3088.[CrossRef]
    [Google Scholar]
  117. Sit, T. L., Vaewhongs, A. A. & Lommel, S. A. ( 1998; ). RNA-mediated trans-activation of transcription from a viral RNA. Science 281, 829–832.[CrossRef]
    [Google Scholar]
  118. Smith, G. L. & Hay, A. J. ( 1982; ). Replication of the influenza virus genome. Virology 118, 96–108.[CrossRef]
    [Google Scholar]
  119. Smith, G. J., Vijaykrishna, D., Bahl, J., Lycett, S. J., Worobey, M., Pybus, O. G., Ma, S. K., Cheung, C. L., Raghwani, J. & other authors ( 2009; ). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122–1125.[CrossRef]
    [Google Scholar]
  120. Snijder, B., Sacher, R., Ramo, P., Damm, E. M., Liberali, P. & Pelkmans, L. ( 2009; ). Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461, 520–523.[CrossRef]
    [Google Scholar]
  121. Suarez, P., Valcarcel, J. & Ortin, J. ( 1992; ). Heterogeneity of the mutation rates of influenza A viruses: isolation of mutator mutants. J Virol 66, 2491–2494.
    [Google Scholar]
  122. Sugiura, A., Tobita, K. & Kilbourne, E. D. ( 1972; ). Isolation and preliminary characterization of temperature-sensitive mutants of influenza virus. J Virol 10, 639–647.
    [Google Scholar]
  123. Tchatalbachev, S., Flick, R. & Hobom, G. ( 2001; ). The packaging signal of influenza viral RNA molecules. RNA 7, 979–989.[CrossRef]
    [Google Scholar]
  124. Torbet, J. ( 1983; ). Internal structural anisotropy of spherical viruses studied with magnetic birefringence. EMBO J 2, 63–66.
    [Google Scholar]
  125. Ueda, M., Nakajima, K. & Sugiura, A. ( 1980; ). Extra RNAs of von Magnus particles of influenza virus cause reduction of particular polymerase genes. J Virol 34, 1–8.
    [Google Scholar]
  126. Varich, N. L., Gitelman, A. K., Shilov, A. A., Smirnov, Y. A. & Kaverin, N. V. ( 2008; ). Deviation from the random distribution pattern of influenza A virus gene segments in reassortants produced under non-selective conditions. Arch Virol 153, 1149–1154.[CrossRef]
    [Google Scholar]
  127. von Magnus, P. ( 1954; ). Incomplete forms of influenza virus. Adv Virus Res 2, 59–79.
    [Google Scholar]
  128. Watanabe, T., Watanabe, S., Noda, T., Fujii, Y. & Kawaoka, Y. ( 2003; ). Exploitation of nucleic acid packaging signals to generate a novel influenza virus-based vector stably expressing two foreign genes. J Virol 77, 10575–10583.[CrossRef]
    [Google Scholar]
  129. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. ( 1992; ). Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152–179.
    [Google Scholar]
  130. Winter, G., Fields, S. & Ratti, G. ( 1981; ). The structure of two subgenomic RNAs from human influenza virus A/PR/8/34. Nucleic Acids Res 9, 6907–6915.[CrossRef]
    [Google Scholar]
  131. Wise, H. M., Foeglein, A., Sun, J., Dalton, R. M., Patel, S., Howard, W., Anderson, E. C., Barclay, W. S. & Digard, P. ( 2009; ). A complicated message: identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol 83, 8021–8031.[CrossRef]
    [Google Scholar]
  132. Yamaguchi, M., Danev, R., Nishiyama, K., Sugawara, K. & Nagayama, K. ( 2008; ). Zernike phase contrast electron microscopy of ice-embedded influenza A virus. J Struct Biol 162, 271–276.[CrossRef]
    [Google Scholar]
  133. Yang, P., Bansal, A., Liu, C. & Air, G. M. ( 1997; ). Hemagglutinin specificity and neuraminidase coding capacity of neuraminidase-deficient influenza viruses. Virology 229, 155–165.[CrossRef]
    [Google Scholar]
  134. Yazaki, K., Sano, T., Nerome, K. & Miura, K. ( 1984; ). Arrangement of coiled ribonucleoprotein in influenza A virus particles. J Electron Microsc (Tokyo) 33, 395–400.
    [Google Scholar]
  135. Ye, Q., Krug, R. M. & Tao, Y. J. ( 2006; ). The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444, 1078–1082.[CrossRef]
    [Google Scholar]
  136. Zheng, H., Palese, P. & Garcia-Sastre, A. ( 1996; ). Nonconserved nucleotides at the 3′ and 5′ ends of an influenza A virus RNA play an important role in viral RNA replication. Virology 217, 242–251.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.017608-0
Loading
/content/journal/jgv/10.1099/vir.0.017608-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error