1887

Abstract

Pandemic influenza viruses can emerge through continuous evolution and the acquisition of specific mutations or through reassortment. This study assessed the pandemic potential of H5N1 viruses isolated from poultry outbreaks occurring from July 2006 to September 2008 in the Lao People's Democratic Republic (PDR). We analyzed 29 viruses isolated from chickens and ducks and two from fatal human cases in 2007. Prior to 2008, all H5N1 isolates in Lao PDR were from clade 2.3.4; however, clade 2.3.2 was introduced in September 2008. Of greatest concern was the circulation of three isolates that showed reduced sensitivity to the neuraminidase (NA) inhibitor oseltamivir in an enzyme inhibition assay, each with different NA mutations – V116A, I222L and K150N, and a previously unreported S246N mutation. In addition, six isolates had an S31N mutation in the M2 protein, which conferred resistance to amantadine not previously reported in clade 2.3.4 viruses. Two H5N1 reassortants were isolated whose polymerase genes, PB1 and PB2, were homologous to those of Eurasian viruses giving rise to a novel H5N1 genotype, genotype P. All H5N1 viruses retained avian-like receptor specificity, but four had altered affinities for 2,3-linked sialic acid. This study shows that, in a genetically similar population of H5N1 viruses in Lao PDR, mutants emerged with natural resistance to antivirals and altered affinities for 2,3-linked sialic acids, together with reassortants with polymerase genes homologous to Eurasian viruses. These changes may contribute to the emergence of a pandemic influenza strain and are critical in devising surveillance strategies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.017459-0
2010-04-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/4/949.html?itemId=/content/journal/jgv/10.1099/vir.0.017459-0&mimeType=html&fmt=ahah

References

  1. Auewarakul, P., Suptawiwat, O., Kongchanagul, A., Sangma, C., Suzuki, Y., Ungchusak, K., Louisirirotchanakul, S., Lerdsamran, H., Pooruk, P. & other authors ( 2007; ). An avian influenza H5N1 virus that binds to a human-type receptor. J Virol 81, 9950–9955.[CrossRef]
    [Google Scholar]
  2. Chen, H., Deng, G., Li, Z., Tian, G., Li, Y., Jiao, P., Zhang, L., Liu, Z., Webster, R. G. & Yu, K. ( 2004; ). The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci U S A 101, 10452–10457.[CrossRef]
    [Google Scholar]
  3. Cheung, C. L., Rayner, J. M., Smith, G. J., Wang, P., Naipospos, T. S., Zhang, J., Yuen, K. Y., Webster, R. G., Peiris, J. S. & other authors ( 2006; ). Distribution of amantadine-resistant H5N1 avian influenza variants in Asia. J Infect Dis 193, 1626–1629.[CrossRef]
    [Google Scholar]
  4. Colman, P. M., Hoyne, P. A. & Lawrence, M. C. ( 1993; ). Sequence and structure alignment of paramyxovirus hemagglutinin–neuraminidase with influenza virus neuraminidase. J Virol 67, 2972–2980.
    [Google Scholar]
  5. de Jong, M. D., Tran, T. T., Truong, H. K., Vo, M. H., Smith, G. J., Nguyen, V. C., Bach, V. C., Phan, T. Q., Do, Q. H. & other authors ( 2005; ). Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med 353, 2667–2672.[CrossRef]
    [Google Scholar]
  6. Donis, R., Smith, G., Perdue, M., Brown, I., Hualan, C., Fouchier, R., Kawaoka, Y., Mackenzie, J., Shu, Y. & other authors ( 2008; ). Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis 14, e1
    [Google Scholar]
  7. Duan, L., Bahl, J., Smith, G. J., Wang, J., Vijaykrishna, D., Zhang, L. J., Zhang, J. X., Li, K. S., Fan, X. H. & other authors ( 2008; ). The development and genetic diversity of H5N1 influenza virus in China, 1996–2006. Virology 380, 243–254.[CrossRef]
    [Google Scholar]
  8. Guan, Y., Shortridge, K. F., Krauss, S. & Webster, R. G. ( 1999; ). Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A 96, 9363–9367.[CrossRef]
    [Google Scholar]
  9. Guan, Y., Peiris, J. S., Lipatov, A. S., Ellis, T. M., Dyrting, K. C., Krauss, S., Zhang, L. J., Webster, R. G. & Shortridge, K. F. ( 2002a; ). Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A 99, 8950–8955.[CrossRef]
    [Google Scholar]
  10. Guan, Y., Peiris, M., Kong, K. F., Dyrting, K. C., Ellis, T. M., Sit, T., Zhang, L. J. & Shortridge, K. F. ( 2002b; ). H5N1 influenza viruses isolated from geese in southeastern China: evidence for genetic reassortment and interspecies transmission to ducks. Virology 292, 16–23.[CrossRef]
    [Google Scholar]
  11. Guan, Y., Poon, L. L., Cheung, C. Y., Ellis, T. M., Lim, W., Lipatov, A. S., Chan, K. H., Sturm-Ramirez, K. M., Cheung, C. L. & other authors ( 2004; ). H5N1 influenza: a protean pandemic threat. Proc Natl Acad Sci U S A 101, 8156–8161.[CrossRef]
    [Google Scholar]
  12. Gubareva, L. V., Webster, R. G. & Hayden, F. G. ( 2002; ). Detection of influenza virus resistance to neuraminidase inhibitors by an enzyme inhibition assay. Antiviral Res 53, 47–61.[CrossRef]
    [Google Scholar]
  13. Ha, Y., Stevens, D. J., Skehel, J. J. & Wiley, D. C. ( 2001; ). X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci U S A 98, 11181–11186.[CrossRef]
    [Google Scholar]
  14. Hatta, M., Gao, P., Halfmann, P. & Kawaoka, Y. ( 2001; ). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840–1842.[CrossRef]
    [Google Scholar]
  15. He, G., Qiao, J., Dong, C., He, C., Zhao, L. & Tian, Y. ( 2008; ). Amantadine-resistance among H5N1 avian influenza viruses isolated in Northern China. Antiviral Res 77, 72–76.[CrossRef]
    [Google Scholar]
  16. Hill, A. W., Guralnick, R. P., Wilson, M. J., Habib, F. & Janies, D. ( 2009; ). Evolution of drug resistance in multiple distinct lineages of H5N1 avian influenza. Infect Genet Evol 9, 169–178.[CrossRef]
    [Google Scholar]
  17. Hoffmann, E., Stech, J., Leneva, I., Krauss, S., Scholtissek, C., Chin, P. S., Peiris, M., Shortridge, K. F. & Webster, R. G. ( 2000; ). Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? J Virol 74, 6309–6315.[CrossRef]
    [Google Scholar]
  18. Hoffmann, E., Stech, J., Guan, Y., Webster, R. G. & Perez, D. R. ( 2001; ). Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146, 2275–2289.[CrossRef]
    [Google Scholar]
  19. Horimoto, T. & Kawaoka, Y. ( 1994; ). Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol 68, 3120–3128.
    [Google Scholar]
  20. Horimoto, T., Fukuda, N., Iwatsuki-Horimoto, K., Guan, Y., Lim, W., Peiris, M., Sugii, S., Odagiri, T., Tashiro, M. & Kawaoka, Y. ( 2004; ). Antigenic differences between H5N1 human influenza viruses isolated in 1997 and 2003. J Vet Med Sci 66, 303–305.[CrossRef]
    [Google Scholar]
  21. Huelsenbeck, J. P. & Ronquist, F. ( 2001; ). mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.[CrossRef]
    [Google Scholar]
  22. Iwata, T., Fukuzawa, K., Nakajima, K., Aida-Hyugaji, S., Mochizuki, Y., Watanabe, H. & Tanaka, S. ( 2008; ). Theoretical analysis of binding specificity of influenza viral hemagglutinin to avian and human receptors based on the fragment molecular orbital method. Comput Biol Chem 32, 198–211.[CrossRef]
    [Google Scholar]
  23. Kaverin, N. V., Rudneva, I. A., Govorkova, E. A., Timofeeva, T. A., Shilov, A. A., Kochergin-Nikitsky, K. S., Krylov, P. S. & Webster, R. G. ( 2007; ). Epitope mapping of the hemagglutinin molecule of a highly pathogenic H5N1 influenza virus with monoclonal antibodies. J Virol 81, 12911–12917.[CrossRef]
    [Google Scholar]
  24. Kohler, G. & Milstein, C. ( 1976; ). Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol 6, 511–519.[CrossRef]
    [Google Scholar]
  25. Landon, M. R., Amaro, R. E., Baron, R., Ngan, C. H., Ozonoff, D., McCammon, J. A. & Vajda, S. ( 2008; ). Novel druggable hot spots in avian influenza neuraminidase H5N1 revealed by computational solvent mapping of a reduced and representative receptor ensemble. Chem Biol Drug Des 71, 106–116.[CrossRef]
    [Google Scholar]
  26. Le, Q. M., Kiso, M., Someya, K., Sakai, Y. T., Nguyen, T. H., Nguyen, K. H., Pham, N. D., Ngyen, H. H., Yamada, S. & other authors ( 2005; ). Avian flu: isolation of drug-resistant H5N1 virus. Nature 437, 1108 [CrossRef]
    [Google Scholar]
  27. Li, K. S., Guan, Y., Wang, J., Smith, G. J., Xu, K. M., Duan, L., Rahardjo, A. P., Puthavathana, P., Buranathai, C. & other authors ( 2004; ). Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209–213.[CrossRef]
    [Google Scholar]
  28. Li, Z., Chen, H., Jiao, P., Deng, G., Tian, G., Li, Y., Hoffmann, E., Webster, R. G., Matsuoka, Y. & Yu, K. ( 2005; ). Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79, 12058–12064.[CrossRef]
    [Google Scholar]
  29. Li, J., Ishaq, M., Prudence, M., Xi, X., Hu, T., Liu, Q. & Guo, D. ( 2009; ). Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2. Virus Res 144, 123–129.[CrossRef]
    [Google Scholar]
  30. Meijer, A., Lackenby, A., Hungnes, O., Lina, B., van-der-Werf, S., Schweiger, B., Opp, M., Paget, J., van-de-Kassteele, J. & other authors ( 2009; ). Oseltamivir-resistant influenza virus A (H1N1), Europe, 2007–08 season. Emerg Infect Dis 15, 552–560.[CrossRef]
    [Google Scholar]
  31. Nylander, J. A. A. ( 2004; ). MrModeltest v2.3. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden. Program distributed by the author.
  32. Owoade, A. A., Gerloff, N. A., Ducatez, M. F., Taiwo, J. O., Kremer, J. R. & Muller, C. P. ( 2008; ). Replacement of sublineages of avian influenza (H5N1) by reassortments, sub-Saharan Africa. Emerg Infect Dis 14, 1731–1735.[CrossRef]
    [Google Scholar]
  33. Peiris, J. S., de Jong, M. D. & Guan, Y. ( 2007; ). Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 20, 243–267.[CrossRef]
    [Google Scholar]
  34. Rameix-Welti, M. A., Agou, F., Buchy, P., Mardy, S., Aubin, J. T., Veron, M., van der Werf, S. & Naffakh, N. ( 2006; ). Natural variation can significantly alter the sensitivity of influenza A (H5N1) viruses to oseltamivir. Antimicrob Agents Chemother 50, 3809–3815.[CrossRef]
    [Google Scholar]
  35. Reed, L. & Muench, H. ( 1938; ). A simple method of estimating fifty per cent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  36. Seo, S. H., Hoffmann, E. & Webster, R. G. ( 2002; ). Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8, 950–954.[CrossRef]
    [Google Scholar]
  37. Smith, G. J., Fan, X. H., Wang, J., Li, K. S., Qin, K., Zhang, J. X., Vijaykrishna, D., Cheung, C. L., Huang, K. & other authors ( 2006; ). Emergence and predominance of an H5N1 influenza variant in China. Proc Natl Acad Sci U S A 103, 16936–16941.[CrossRef]
    [Google Scholar]
  38. Smith, G. J., Vijaykrishna, D., Ellis, T. M., Dyrting, K. C., Leung, Y. H., Bahl, J., Wong, C. W., Kai, H., Chow, M. K. & other authors ( 2009; ). Characterization of avian influenza viruses A (H5N1) from wild birds, Hong Kong, 2004–2008. Emerg Infect Dis 15, 402–407.[CrossRef]
    [Google Scholar]
  39. Stevens, J., Blixt, O., Chen, L. M., Donis, R. O., Paulson, J. C. & Wilson, I. A. ( 2008; ). Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. J Mol Biol 381, 1382–1394.[CrossRef]
    [Google Scholar]
  40. Vijaykrishna, D., Bahl, J., Riley, S., Duan, L., Zhang, J. X., Chen, H., Peiris, J. S., Smith, G. J. & Guan, Y. ( 2008; ). Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathog 4, e1000161 [CrossRef]
    [Google Scholar]
  41. Wan, X. F., Nguyen, T., Davis, C. T., Smith, C. B., Zhao, Z. M., Carrel, M., Inui, K., Do, H. T., Mai, D. T. & other authors ( 2008; ). Evolution of highly pathogenic H5N1 avian influenza viruses in Vietnam between 2001 and 2007. PLoS One 3, e3462 [CrossRef]
    [Google Scholar]
  42. Wang, H., Feng, Z., Shu, Y., Yu, H., Zhou, L., Zu, R., Huai, Y., Dong, J., Bao, C. & other authors ( 2008; ). Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China. Lancet 371, 1427–1434.[CrossRef]
    [Google Scholar]
  43. Xu, X., Subbarao, Cox, N. J. & Guo, Y. ( 1999; ). Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261, 15–19.[CrossRef]
    [Google Scholar]
  44. Yamada, S., Suzuki, Y., Suzuki, T., Le, M. Q., Nidom, C. A., Sakai-Tagawa, Y., Muramoto, Y., Ito, M., Kiso, M. & other authors ( 2006; ). Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444, 378–382.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.017459-0
Loading
/content/journal/jgv/10.1099/vir.0.017459-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error