1887

Abstract

The mechanisms by which infectious hepatitis C virus (HCV) particles are assembled and released from infected cells remain poorly characterized. In this regard, many other enveloped viruses, notably human immunodeficiency virus type 1, have been shown to utilize the host vacuolar protein sorting machinery (also known as the endosomal sorting complex required for transport; ESCRT) to traffic through the cell and effect the membrane rearrangements required for the formation of enveloped particles. We postulated that this might also apply to HCV. To test this hypothesis, we established a method of conditional virus-like particle assembly involving -complementation of an envelope-deleted JFH-1 genome using plasmid transfection. This system reliably produced virus particles that were infectious and could be enumerated easily by focus-forming assay in Huh7 cells. Following co-transfection with plasmids expressing various dominant-negative forms of either components of the ESCRT-III complex or Vps4 (the AAA ATPase that recycles the ESCRT complexes), a reduction in particle production was seen. No significant effect was observed after co-transfection of dominant-negative ESCRT-I or Alix, an ESCRT associated protein. Dominant-negative Vps4 or ESCRT-III components had no effect on either virus genome replication or the accumulation of intracellular infectious particles. These data were confirmed using cell culture infectious HCV and we conclude that HCV requires late components of the ESCRT pathway for release of infectious virus particles.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.017285-0
2010-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/2/362.html?itemId=/content/journal/jgv/10.1099/vir.0.017285-0&mimeType=html&fmt=ahah

References

  1. Adair, R., Patel, A. H., Corless, L., Griffin, S., Rowlands, D. J. & McCormick, C. J.(2009). Expression of hepatitis C virus (HCV) structural proteins in trans facilitates encapsidation and transmission of HCV subgenomic RNA. J Gen Virol 90, 833–842.[CrossRef] [Google Scholar]
  2. Bieniasz, P. D.(2006). Late budding domains and host proteins in enveloped virus release. Virology 344, 55–63.[CrossRef] [Google Scholar]
  3. Bishop, N. & Woodman, P.(2000). ATPase-defective mammalian VPS4 localises to aberrant endosomes and impairs cholesterol trafficking. Mol Biol Cell 11, 227–239.[CrossRef] [Google Scholar]
  4. Boulant, S., Montserret, R., Hope, R. G., Ratinier, M., Targett-Adams, P., Lavergne, J. P., Penin, F. & McLauchlan, J.(2006). Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 281, 22236–22247.[CrossRef] [Google Scholar]
  5. Bredenbeek, P. J., Frolov, I., Rice, C. M. & Schlesinger, S.(1993). Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J Virol 67, 6439–6446. [Google Scholar]
  6. Bruce, E. A., Medcalf, L., Crump, C. M., Noton, S. L., Stuart, A. D., Wise, H. M., Elton, D., Bowers, K. & Digard, P.(2009). Budding of filamentous and non-filamentous influenza A virus occurs via a Vps4 and Vps28-independent pathway. Virology 390, 268–278.[CrossRef] [Google Scholar]
  7. Chung, H. Y., Morita, E., von Schwedler, U., Muller, B., Kräusslich, H. G. & Sundquist, W. I.(2008). NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains. J Virol 82, 4884–4897.[CrossRef] [Google Scholar]
  8. Crump, C. M., Yates, C. & Minson, T.(2007). Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4. J Virol 81, 7380–7387.[CrossRef] [Google Scholar]
  9. Demirov, D. G. & Freed, E. O.(2004). Retrovirus budding. Virus Res 106, 87–102.[CrossRef] [Google Scholar]
  10. Garrus, J. E., von Schwedler, U. K., Pormillos, O. W., Morham, S. G., Zavitz, K. H., Wang, H. E., Wettstein, D. A., Stray, K. M., Côté, M. & other authors(2001). TSG101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65.[CrossRef] [Google Scholar]
  11. Griffin, S., Clarke, D., McCormick, C., Rowlands, D. & Harris, M.(2005). Signal peptide cleavage and internal targeting signals direct the hepatitis C virus p7 protein to distinct intracellular membranes. J Virol 79, 15525–15536.[CrossRef] [Google Scholar]
  12. Griffin, S., StGelais, C., Owsianka, A. M., Patel, A. H., Rowlands, D. & Harris, M.(2008). Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel. Hepatology 48, 1779–1790.[CrossRef] [Google Scholar]
  13. Hanna, S. L., Pierson, T. C., Sanchez, M. D., Ahmed, A. A., Murtadha, M. M. & Doms, R. W.(2005).N-linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity. J Virol 79, 13262–13274.[CrossRef] [Google Scholar]
  14. Harvey, T. J., Liu, W. J., Wang, X. J., Linedale, R., Jacobs, M., Davidson, A., Le, T. T., Anraku, I., Suhrbier, A. & other authors(2004). Tetracycline-inducible packaging cell line for production of Flavivirus replicon particles. J Virol 78, 531–539.[CrossRef] [Google Scholar]
  15. Huang, H., Sun, F., Owen, D. M., Li, W., Chen, Y., Gale, M. & Ye, J.(2007). Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci U S A 104, 5848–5853.[CrossRef] [Google Scholar]
  16. Hughes, M., Griffin, S. & Harris, M.(2009). Domain III of NS5A contributes to both RNA replication and assembly of hepatitis C virus particles. J Gen Virol 90, 1329–1334.[CrossRef] [Google Scholar]
  17. Hurley, J. H. & Emr, S. D.(2006). The ESCRT complexes: structure and mechanism of a membrane trafficking network. Annu Rev Biophys Biomol Struct 35, 277–298.[CrossRef] [Google Scholar]
  18. Ishii, K., Murakami, K., Hmwe, S. S., Bin, Z., Li, J., Shirakura, M., Morikawa, K., Suzuki, R., Miyamura, T. & other authors(2008).Trans-encapsidation of hepatitis C virus subgenomic replicon RNA with viral structure proteins. Biochem Biophys Res Commun 371, 446–450.[CrossRef] [Google Scholar]
  19. Khromykh, A. A., Varnavski, A. N. & Westaway, E. G.(1998). Encapsidation of the Flavivirus Kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans. J Virol 72, 5967–5977. [Google Scholar]
  20. Lambert, C., Döring, T. & Prange, R.(2007). Hepatitis B virus maturation is sensitive to functional inhibition of ESCRT-III, Vps4, and gamma 2-adaptin. J Virol 81, 9050–9060.[CrossRef] [Google Scholar]
  21. Lindenbach, B. D., Evans, M. J., Syder, A. J., Wölk, B., Tellinghuisen, T. L., Liu, C. C., Maruyama, T., Hynes, R. O., Burton, D. R. & other authors(2005). Complete replication of hepatitis C virus in cell culture. Science 309, 623–626.[CrossRef] [Google Scholar]
  22. Macdonald, A., Crowder, K., Street, A., McCormick, C., Saksela, K. & Harris, M.(2003). The hepatitis C virus NS5A protein inhibits activating protein-1 (AP1) function by perturbing Ras–ERK pathway signalling. J Biol Chem 278, 17775–17784.[CrossRef] [Google Scholar]
  23. Martin-Serrano, J., Zang, T. & Bieniasz, P. D.(2001). HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 7, 1313–1319.[CrossRef] [Google Scholar]
  24. Martin-Serrano, J., Zang, T. & Bieniasz, P.(2003). Role of ESCRT-I in retroviral budding. J Virol 77, 4794–4804.[CrossRef] [Google Scholar]
  25. McDonald, B. & Martin-Serrano, J.(2009). No strings attached: the ESCRT machinery in viral budding and cytokinesis. J Cell Sci 122, 2167–2177.[CrossRef] [Google Scholar]
  26. Miyanari, Y., Atsuzawa, K., Usuda, N., Watashi, K., Hishiki, T., Zayas, M., Bartenschlager, R., Wakita, T., Hijikata, M. & Shimotohno, K.(2007). The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9, 1089–1097.[CrossRef] [Google Scholar]
  27. Munshi, U. M., Kim, J., Nagashima, K., Hurley, J. H. & Freed, E. O.(2007). An Alix fragment potently inhibits HIV-1 budding: characterization of binding to retroviral YPXL late domains. J Biol Chem 282, 3847–3855. [Google Scholar]
  28. Obita, T., Saksena, S., Ghazi-Tabatabai, S., Gill, D. J., Perisic, O., Emr, S. D. & Williams, R. L.(2007). Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739.[CrossRef] [Google Scholar]
  29. Pawliczek, T. & Crump, C. M.(2009). Herpes simplex virus type-1 production requires a functional ESCRT-III complex, but is independent of TSG101 and/or ALIX expression. J Virol 83, 11254–11264.[CrossRef] [Google Scholar]
  30. Pincetic, A., Medina, G., Carter, C. & Leis, J.(2008). Avian sarcoma virus and the human immunodeficiency virus, type 1 use different subsets of ESCRT proteins to facilitate the budding process. J Biol Chem 283, 29822–29830.[CrossRef] [Google Scholar]
  31. Schmitt, A. P., Leser, G. P., Morita, E., Sundquist, W. I. & Lamb, R. A.(2005). Evidence for a new viral late-domain core sequence, FPIV, necessary for budding of a paramyxovirus. J Virol 79, 2988–2997.[CrossRef] [Google Scholar]
  32. Shirakura, M., Murakami, K., Ichimura, T., Suzuki, R., Shimoji, T., Fukuda, K., Abe, K., Sato, S., Fukasawa, M. & other authors(2007). E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J Virol 81, 1174–1185.[CrossRef] [Google Scholar]
  33. Steinmann, E., Brohm, C., Kallis, S., Bartenschlager, R. & Pietschmann, T.(2008). Efficient trans-encapsidation of hepatitis C virus RNAs into infectious virus like particles. J Virol 82, 7034–7046.[CrossRef] [Google Scholar]
  34. Stuchell-Brereton, M. D., Skalicky, J. J., Kieffer, C., Karren, M. A., Ghaffarian, S. & Sundquist, W. I.(2007). ESCRT-III recognition by VPS4 ATPases. Nature 449, 740–744.[CrossRef] [Google Scholar]
  35. Suzuki, R., Tamura, K., Li, J., Ishii, K., Matsuura, Y., Miyamura, T. & Suzuki, T.(2001). Ubiquitin-mediated degradation of hepatitis C virus core protein is regulated by processing at its carboxyl terminus. Virology 280, 301–309.[CrossRef] [Google Scholar]
  36. Targett Adams, P. & McLauchlan, J.(2005). Development and characterisation of a transient replication assay for the genotype 2a hepatitis C virus subgenomic replicon. J Gen Virol 86, 3075–3080.[CrossRef] [Google Scholar]
  37. Teis, D., Saksena, S. & Emr, S.(2008). Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell 15, 578–589.[CrossRef] [Google Scholar]
  38. Teis, D., Saksena, S. & Emr, S.(2009). SnapShot: The ESCRT Machinery. Cell 137, 182–182.e1.[CrossRef] [Google Scholar]
  39. Usami, Y., Popov, S., Popova, E. & Gottlinger, H. G.(2008). Efficient and specific release of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase. J Virol 82, 4898–4907.[CrossRef] [Google Scholar]
  40. Utley, T. J., Ducharme, N. A., Varthakavi, V., Shepherd, B. E., Santangelo, P. J., Lindquist, M. E., Goldenring, J. R. & Crowe, J. E., Jr(2008). Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11–FIP2. Proc Natl Acad Sci U S A 105, 10209–10214.[CrossRef] [Google Scholar]
  41. Wakita, T., Pietschmann, T., Kato, T., Date, T., Miyamoto, M., Zhao, Z., Murthy, K., Habermann, A., Kräusslich, H. G. & other authors(2005). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11, 791–796.[CrossRef] [Google Scholar]
  42. Welbourn, S., Jirasko, V., Breton, V., Reiss, S., Penin, F., Bartenschlager, R. & Pause, A.(2009). Investigation of a role for lysine residues in non-structural proteins 2 and 2/3 of the hepatitis C virus for their degradation and virus assembly. J Gen Virol 90, 1071–1080.[CrossRef] [Google Scholar]
  43. Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H.(2009). Membrane scission by the ESCRT-III complex. Nature 458, 172–177.[CrossRef] [Google Scholar]
  44. Yanagi, M., St Claire, M., Shapiro, M., Emerson, S. U., Purcell, R. H. & Bukh, J.(1998). Transcripts of a chimeric cDNA clone of hepatitis C virus genotype 1b are infectious in vivo. Virology 244, 161–172.[CrossRef] [Google Scholar]
  45. Ye, J.(2007). Reliance of host cholesterol metabolic pathways for the life cycle of hepatitis C virus. PLoS Pathog 3, e108[CrossRef] [Google Scholar]
  46. Zhong, J., Gastaminza, P., Cheng, C., Kapadia, S., Kato, T., Burton, D. R., Wieland, S. F., Uprichard, S. L., Wakita, T. & Chisari, F. V.(2005). Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102, 9294–9299.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.017285-0
Loading
/content/journal/jgv/10.1099/vir.0.017285-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error