1887

Abstract

Ten novel mutations were introduced into the Zp promoter to test the role of sequences outside the established transcription factor-binding sites in Epstein–Barr virus (EBV) reactivation. Most of these had only small effects, but mutations in the ZID site were shown to reduce Zp activity strongly at early times after induction by anti-immunoglobulin (anti-Ig). The binding of MEF2 transcription factor to ZID was characterized in detail and linked functionally to Zp promoter activity. The presence of XBP-1s, the active form of XBP-1, after administration of anti-Ig to Akata Burkitt's lymphoma cells is consistent with a role for this factor in reactivation of the EBV lytic cycle, although signalling through MEF2D was quantitatively much more significant in activation of Zp. Silencing of Zp during latency is thought to be primarily a consequence of a repressive chromatin structure on Zp, and this aspect of Zp regulation can be observed in the Akata genome through protection of Zp from activation by BZLF1 in the absence of signalling from the B-cell receptor.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.017277-0
2010-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/3/622.html?itemId=/content/journal/jgv/10.1099/vir.0.017277-0&mimeType=html&fmt=ahah

References

  1. Amon W., Binne U. K., Bryant H., Jenkins P. J., Karstegl C. E., Farrell P. J. 2004; Lytic cycle gene regulation of Epstein–Barr virus. J Virol 78:13460–13469 [CrossRef]
    [Google Scholar]
  2. Bhende P. M., Dickerson S. J., Sun X., Feng W. H., Kenney S. C. 2007; X-box-binding protein 1 activates lytic Epstein–Barr virus gene expression in combination with protein kinase D. J Virol 81:7363–7370 [CrossRef]
    [Google Scholar]
  3. Binné U. K., Amon W., Farrell P. J. 2002; Promoter sequences required for reactivation of Epstein–Barr virus from latency. J Virol 76:10282–10289 [CrossRef]
    [Google Scholar]
  4. Borras A. M., Strominger J. L., Speck S. H. 1996; Characterization of the ZI domains in the Epstein–Barr virus BZLF1 gene promoter: role in phorbol ester induction. J Virol 70:3894–3901
    [Google Scholar]
  5. Bryant H., Farrell P. 2002; Signal transduction and transcription factor modification during reactivation of Epstein–Barr virus from latency. J Virol 76:10290–10298 [CrossRef]
    [Google Scholar]
  6. Calfon M., Zeng H., Urano F., Till J. H., Hubbard S. R., Harding H. P., Clark S. G., Ron D. 2002; IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96 [CrossRef]
    [Google Scholar]
  7. Chevallier-Greco A., Manet E., Chavrier P., Mosnier C., Daillie J., Sergeant A. 1986; Both Epstein–Barr virus (EBV)-encoded trans -acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J 5:3243–3249
    [Google Scholar]
  8. Daibata M., Speck S. H., Mulder C., Sairenji T. 1994; Regulation of the BZLF1 promoter of Epstein–Barr virus by second messengers in anti-immunoglobulin-treated B cells. Virology 198:446–454 [CrossRef]
    [Google Scholar]
  9. Dalton-Griffin L., Wilson S. J., Kellam P. 2009; X-box binding protein 1 contributes to induction of the Kaposi's sarcoma-associated herpesvirus lytic cycle under hypoxic conditions. J Virol 83:7202–7209 [CrossRef]
    [Google Scholar]
  10. Flemington E., Speck S. H. 1990; Identification of phorbol ester response elements in the promoter of Epstein–Barr virus putative lytic switch gene BZLF1. J Virol 64:1217–1226
    [Google Scholar]
  11. Flemington E. K., Borras A. M., Lytle J. P., Speck S. H. 1992; Characterization of the Epstein–Barr virus BZLF1 protein transactivation domain. J Virol 66:922–929
    [Google Scholar]
  12. Gruffat H., Manet E., Sergeant A. 2002; MEF2-mediated recruitment of class II HDAC at the EBV immediate early gene BZLF1 links latency and chromatin remodeling. EMBO Rep 3:141–146 [CrossRef]
    [Google Scholar]
  13. Hu C. C., Dougan S. K., McGehee A. M., Love J. C., Ploegh H. L. 2009; XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells. EMBO J 28:1624–1636 [CrossRef]
    [Google Scholar]
  14. Iwakoshi N. N., Lee A. H., Vallabhajosyula P., Otipoby K. L., Rajewsky K., Glimcher L. H. 2003; Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4:321–329
    [Google Scholar]
  15. Jenkins P. J., Binné U. K., Farrell P. J. 2000; Histone acetylation and reactivation of Epstein–Barr virus from latency. J Virol 74:710–720 [CrossRef]
    [Google Scholar]
  16. Johannsen E., Luftig M., Chase M. R., Weicksel S., Cahir-McFarland E., Illanes D., Sarracino D., Kieff E. 2004; Proteins of purified Epstein–Barr virus. Proc Natl Acad Sci U S A 101:16286–16291 [CrossRef]
    [Google Scholar]
  17. Kraus R. J., Mirocha S. J., Stephany H. M., Puchalski J. R., Mertz J. E. 2001; Identification of a novel element involved in regulation of the lytic switch BZLF1 gene promoter of Epstein–Barr virus. J Virol 75:867–877 [CrossRef]
    [Google Scholar]
  18. Laichalk L. L., Thorley-Lawson D. A. 2005; Terminal differentiation into plasma cells initiates the replicative cycle of Epstein–Barr virus in vivo . J Virol 79:1296–1307 [CrossRef]
    [Google Scholar]
  19. Reimold A. M., Iwakoshi N. N., Manis J., Vallabhajosyula P., Szomolanyi-Tsuda E., Gravallese E. M., Friend D., Grusby M. J., Alt F., Glimcher L. H. 2001; Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–307 [CrossRef]
    [Google Scholar]
  20. Skalet A. H., Isler J. A., King L. B., Harding H. P., Ron D., Monroe J. G. 2005; Rapid B cell receptor-induced unfolded protein response in nonsecretory B cells correlates with pro- versus antiapoptotic cell fate. J Biol Chem 280:39762–39771 [CrossRef]
    [Google Scholar]
  21. Sun C. C., Thorley-Lawson D. A. 2007; Plasma cell-specific transcription factor XBP-1s binds to and transactivates the Epstein–Barr virus BZLF1 promoter. J Virol 81:13566–13577 [CrossRef]
    [Google Scholar]
  22. Takada K., Ono Y. 1989; Synchronous and sequential activation of latently infected Epstein–Barr virus genomes. J Virol 63:445–449
    [Google Scholar]
  23. Thorley-Lawson D. A., Duca K. A., Shapiro M. 2008; Epstein–Barr virus: a paradigm for persistent infection – for real and in virtual reality. Trends Immunol 29:195–201 [CrossRef]
    [Google Scholar]
  24. Wilson S. J., Tsao E. H., Webb B. L., Ye H., Dalton-Griffin L., Tsantoulas C., Gale C. V., Du M. Q., Whitehouse A., Kellam P. 2007; X box binding protein XBP-1s transactivates the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF50 promoter, linking plasma cell differentiation to KSHV reactivation from latency. J Virol 81:13578–13586 [CrossRef]
    [Google Scholar]
  25. Yan B. C., Adachi T., Tsubata T. 2008; ER stress is involved in B cell antigen receptor ligation-induced apoptosis. Biochem Biophys Res Commun 365:143–148 [CrossRef]
    [Google Scholar]
  26. Yu X., Wang Z., Mertz J. E. 2007; ZEB1 regulates the latent-lytic switch in infection by Epstein–Barr virus. PLoS Pathog 3:e194 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.017277-0
Loading
/content/journal/jgv/10.1099/vir.0.017277-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error