Lymphocryptovirus phylogeny and the origins of Epstein–Barr virus Free

Abstract

Specimens from wild and captive primates were collected and novel members of the genus (subfamily ) were searched for utilizing PCR for the DNA polymerase gene. Twenty-one novel viruses were detected. Together with previous findings, more than 50 distinct lymphocryptoviruses (LCVs) are now known, with hosts from six primate families (Hominidae, Hylobatidae, Cercopithecidae, Atelidae, Cebidae and Pitheciidae). Further work extended genomic sequences for 25 LCVs to 3.4–7.4 kbp. Phylogenetic trees were constructed, based on alignments of protein sequences inferred from the LCV genomic data. The LCVs fell into three major clades: Clade A, comprising New World viruses; Clade B, containing both Old World monkey viruses and hominoid viruses including Epstein–Barr virus (EBV); and Clade C, containing other hominoid viruses. By comparison with the primate tree, it was proposed that major elements of the LCV tree represented synchronous evolution with host lineages, with the earliest node in both trees being the separation of Old and New World lines, but that some virus lineages originated by interspecies transfer. From comparisons of branch lengths, it was inferred that evolutionary substitution in Clade B has proceeded more slowly than elsewhere in the LCV tree. It was estimated that in Clade B a subclade containing EBV, a gorilla virus and two chimpanzee viruses derived from an Old World monkey LCV line approximately 12 million years ago, and another subclade containing an orang-utan virus and a gibbon virus derived from a macaque LCV line approximately 1.2 million years ago.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.017251-0
2010-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/3/630.html?itemId=/content/journal/jgv/10.1099/vir.0.017251-0&mimeType=html&fmt=ahah

References

  1. Ackermann M. 2006; Pathogenesis of gammaherpesvirus infections. Vet Microbiol 113:211–222 [CrossRef]
    [Google Scholar]
  2. Albini S., Zimmermann W., Neff F., Ehlers B., Häni H., Li H., Hüssy D., Engels M., Ackermann M. 2003; Identification and quantification of ovine gammaherpesvirus 2 DNA in fresh and stored tissues of pigs with symptoms of porcine malignant catarrhal fever. J Clin Microbiol 41:900–904 [CrossRef]
    [Google Scholar]
  3. Bininda-Emonds O. R. P., Cardillo M., Jones K. E., MacPhee R. D. E., Beck R. M. D., Grenyer R., Price S. A., Vos R. A., Gittleman J. L., Purvis A. 2007; The delayed rise of present-day mammals. Nature 446:507–512 [CrossRef]
    [Google Scholar]
  4. Chmielewicz B., Goltz M., Lahrmann K. H., Ehlers B. 2003; Approaching virus safety in xenotransplantation: a search for unrecognized herpesviruses in pigs. Xenotransplantation 10:349–357 [CrossRef]
    [Google Scholar]
  5. Cho Y., Ramer J., Rivailler P., Quink C., Garber R. L., Beier D. R., Wang F. 2001; An Epstein–Barr-related herpesvirus from marmoset lymphomas. Proc Natl Acad Sci U S A 98:1224–1229 [CrossRef]
    [Google Scholar]
  6. Cleary M. L., Epstein M. A., Finerty S., Dorfman R. F., Bornkamm G. W., Kirkwood J. K., Morgan A. J., Sklar J. 1985; Individual tumors of multifocal EB virus-induced malignant lymphomas in tamarins arise from different B-cell clones. Science 228:722–724 [CrossRef]
    [Google Scholar]
  7. Davison A. J., Eberle R., Ehlers B., Hayward G. S., McGeoch D. J., Minson A. C., Pellett P. E., Roizman B., Studdert M. J., Thiry E. 2009; The order Herpesvirales . Arch Virol 154:171–177 [CrossRef]
    [Google Scholar]
  8. Ehlers B., Ochs A., Leendertz F., Goltz M., Boesch C., Mätz-Rensing K. 2003; Novel simian homologues of Epstein–Barr virus. J Virol 77:10695–10699 [CrossRef]
    [Google Scholar]
  9. Ehlers B., Dural G., Yasmum N., Lembo T., de Thoisy B., Ryser-Degiorgis M. P., Ulrich R. G., McGeoch D. J. 2008; Novel mammalian herpesviruses and lineages within the Gammaherpesvirinae : cospeciation and interspecies transfer. J Virol 82:3509–3516 [CrossRef]
    [Google Scholar]
  10. Epstein M. A., Achong B. G., Barr Y. M. 1964; Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1:702–703
    [Google Scholar]
  11. Felsenstein J. 1993 phylip (phylogeny inference package) version 3.6a2. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  12. Frank A., Andiman W. A., Miller G. 1976; Epstein–Barr virus and nonhuman primates: natural and experimental infection. Adv Cancer Res 23:171–201
    [Google Scholar]
  13. Fujimoto K., Terato K., Miyamoto J., Ishiko H., Fujisaki M., Cho F., Honjo S. 1990; Establishment of a B-lymphoblastoid cell line infected with Epstein–Barr-related virus from a cynomolgus monkey ( Macaca fascicularis ). J Med Primatol 19:21–30
    [Google Scholar]
  14. Gerner C. S., Dolan A., McGeoch D. J. 2004; Phylogenetic relationships in the Lymphocryptovirus genus of the Gammaherpesvirinae. Virus Res 99:187–192 [CrossRef]
    [Google Scholar]
  15. Hahn B. H., Shaw G. M., De Cock K. M., Sharp P. M. 2000; AIDS as a zoonosis: scientific and public health implications. Science 287:607–614 [CrossRef]
    [Google Scholar]
  16. Hayashi K., Chen H. L., Yanai H., Koirala T. R., Ohara N., Teramoto N., Oka T., Yoshino T., Takahashi K. et al. 1999; Cyno-EBV (EBV-related herpesvirus from cynomolgus macaques) induces rabbit malignant lymphomas and their tumor cell lines frequently show specific chromosomal abnormalities. Lab Invest 79:823–835
    [Google Scholar]
  17. Huang E. S., Kilpatrick B., Lakeman A., Alford C. A. 1978; Genetic analysis of a cytomegalovirus-like agent isolated from human brain. J Virol 26:718–723
    [Google Scholar]
  18. Jones D. T., Taylor W. R., Thornton J. M. 1992; The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282
    [Google Scholar]
  19. Katoh K., Misawa K., Kuma K., Miyata T. 2002; mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066 [CrossRef]
    [Google Scholar]
  20. Landon J. C., Ellis L. B., Zeve V. H., Fabrizio D. P. 1968; Herpes-type virus in cultured leukocytes from chimpanzees. J Natl Cancer Inst 40:181–192
    [Google Scholar]
  21. Leendertz F. H., Pauli G., Ellerbrok H., Maetz-Rensing K., Boardman W., Nunn C., Ellerbrok H., Jensen S. A., Junglen S., Boesch C. 2006; Pathogens as drivers of population declines: the importance of systematic monitoring in great apes and other threatened mammals. Biol Conserv 131:325–337 [CrossRef]
    [Google Scholar]
  22. Leendertz F. H., Deckers M., Schempp W., Lankester F., Boesch C., Mugisha L., Dolan A., Gatherer D., McGeoch D. J., Ehlers B. 2009; Novel cytomegaloviruses in free-ranging and captive great apes: phylogenetic evidence for bidirectional horizontal transmission. J Gen Virol 90:2386–2394 [CrossRef]
    [Google Scholar]
  23. Mätz-Rensing K., Jentsch K. D., Rensing S., Langenhuyzen S., Verschoor E., Niphuis H., Kaup F. J. 2003; Fatal Herpes simplex infection in a group of common marmosets ( Callithrix jacchus ). Vet Pathol 40:405–411 [CrossRef]
    [Google Scholar]
  24. McGeoch D. J., Gatherer D. 2007; Lineage structures in the genome sequences of three Epstein–Barr virus strains. Virology 359:1–5 [CrossRef]
    [Google Scholar]
  25. McGeoch D. J., Rixon F. J., Davison A. J. 2006; Topics in herpesvirus genomics and evolution. Virus Res 117:90–104 [CrossRef]
    [Google Scholar]
  26. McGeoch D. J., Davison A. J., Dolan A., Gatherer D., Sevilla-Reyes E. E. 2008; Molecular evolution of the Herpesvirales . In Origin and Evolution of Viruses , 2nd edn. pp 447–475 Edited by Domingo E., Parrish C. R., Holland J. J. London: Academic Press;
    [Google Scholar]
  27. Meléndez L. V., Hunt R. D., Daniel M. D., García F. G., Fraser C. E. 1969; Herpesvirus saimiri. II. Experimentally induced malignant lymphoma in primates. Lab Anim Care 19:378–386
    [Google Scholar]
  28. Mettenleiter T. C. 2008; Pseudorabies virus. In Encyclopedia of Virology , 3rd edn. pp 341–351 Edited by Mahy B., Regenmortel M. Van. Amsterdam: Elsevier;
    [Google Scholar]
  29. Neubauer R. H., Rabin H., Strand B. C., Nonoyama M., Nelson-Rees W. A. 1979; Establishment of a lymphoblastoid cell line and isolation of an Epstein–Barr-related virus of gorilla origin. J Virol 31:845–848
    [Google Scholar]
  30. Pagano J. S. 1999; Epstein–Barr virus: the first human tumor virus and its role in cancer. Proc Assoc Am Physicians 111:573–580 [CrossRef]
    [Google Scholar]
  31. Palmer A. E. 1987; B virus, Herpesvirus simiae: historical perspective. J Med Primatol 16:99–130
    [Google Scholar]
  32. Prepens S., Kreuzer K.-A., Leendertz F., Nitsche A., Ehlers B. 2007; Discovery of herpesviruses in multi-infected primates using locked nucleic acids (LNA) and a bigenic PCR approach. Virol J 4:84 [CrossRef]
    [Google Scholar]
  33. Raaum R. L., Sterner K. N., Noviello C. M., Stewart C.-B., Disotell T. R. 2005; Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48:237–257 [CrossRef]
    [Google Scholar]
  34. Ramer J. C., Garber R. L., Steele K. E., Boyson J. F., O'Rourke C., Thomson J. A. 2000; Fatal lymphoproliferative disease associated with a novel gammaherpesvirus in a captive population of common marmosets. Comp Med 50:59–68
    [Google Scholar]
  35. Rangan S. R., Martin L. N., Bozelka B. E., Wang N., Gormus B. J. 1986; Epstein–Barr virus-related herpesvirus from a rhesus monkey ( Macaca mulatta ) with malignant lymphoma. Int J Cancer 38:425–432 [CrossRef]
    [Google Scholar]
  36. Rasheed S., Rongey R. W., Bruszweski J., Nelson-Rees W. A., Rabin H., Neubauer R. H., Esra G., Gardner M. B. 1977; Establishment of a cell line with associated Epstein–Barr-like virus from a leukemic orangutan. Science 198:407–409 [CrossRef]
    [Google Scholar]
  37. Richman L. K., Montali R. J., Garber R. L., Kennedy M. A., Lehnhardt J., Hildebrandt T., Schmitt D., Hardy D., Alcendor D. J., Hayward G. S. 1999; Novel endotheliotropic herpesviruses fatal for Asian and African elephants. Science 283:1171–1176 [CrossRef]
    [Google Scholar]
  38. Rivadeneira E. D., Ferrari M. G., Jarrett R. F., Armstrong A. A., Markham P., Birkebak T., Takemoto S., Johnson-Delaney C., Pecon-Slattery J. other authors 1999; A novel Epstein–Barr virus-like virus, HVMNE, in a Macaca nemestrina with mycosis fungoides. Blood 94:2090–2101
    [Google Scholar]
  39. Rivailler P., Cho Y. G., Wang F. 2002; Complete genomic sequence of an Epstein–Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 76:12055–12068 [CrossRef]
    [Google Scholar]
  40. Ronquist F., Huelsenbeck J. P. 2003; MrBayes 3: Bayesian inference under mixed methods. Bioinformatics 19:1572–1574 [CrossRef]
    [Google Scholar]
  41. Schneider H. 2000; The current status of the new world monkey phylogeny. An Acad Bras Cienc 72:165–172 [CrossRef]
    [Google Scholar]
  42. Steiper M. E., Young N. M. 2006; Primate molecular divergence dates. Mol Phylogenet Evol 41:384–394 [CrossRef]
    [Google Scholar]
  43. Vasiljeva V. A., Markarjan D. S., Lapin B. A., Yakovleva L. A., Ivanov M. T., Schekolodkin V. F., Dzikidze E. K. 1974; Establishment of continuous cell lines from leukocytes culture of a hamadryas baboon with leukosis-reticulosis. Neoplasma 21:537–544
    [Google Scholar]
  44. Yang Z. 2007; paml 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591 [CrossRef]
    [Google Scholar]
  45. Young L. S., Rickinson A. B. 2004; Epstein–Barr virus: 40 years on. Nat Rev Cancer 4:757–768 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.017251-0
Loading
/content/journal/jgv/10.1099/vir.0.017251-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed