Human papillomavirus (HPV) 58 is a high-risk HPV type associated with progression to invasive genital carcinomas. We developed six monoclonal antibodies (mAbs) against HPV58 L1 virus-like particles that bind conformational epitopes on HPV58. The hybridoma cell lines were adapted to serum- and animal component-free conditions and the mAb supernatants were affinity-purified. The six mAbs neutralized HPV58 pseudoviruses (PsVs) and ‘quasivirions’ with different capacities. The mAbs differed in their ability to prevent PsV58 attachment to HaCaT cells, to the extracellular matrix (ECM) deposited by HaCaT cells, to heparin and to purified human laminin 5, a protein in the ECM. These mAbs provide a unique set of tools to study the binding properties of a previously untested, high-risk HPV type and the opportunity to compare these characteristics with the binding of other HPV types.


Article metrics loading...

Loading full text...

Full text loading...



  1. Bhatla, N., Lal, N., Bao, Y. P., Ng, T. & Qiao, Y. L.(2008). A meta-analysis of human papillomavirus type distribution in women from South Asia: implications for vaccination. Vaccine 26, 2811–2817.[CrossRef] [Google Scholar]
  2. Broutian, T. R., Brendle, S. A. & Christensen, N. D.(2010). Differential binding patterns to host cells associated with particles of several human alpha papillomavirus types. J Gen Virol 91, 531–540.[CrossRef] [Google Scholar]
  3. Buck, C. B., Thompson, C. D., Pang, Y. Y. S., Lowy, D. R. & Schiller, J. T.(2005). Maturation of papillomavirus capsids. J Virol 79, 2839–2846.[CrossRef] [Google Scholar]
  4. Chan, P. K. S., Mak, K. H., Cheung, J. L. K., Tang, N. L. S., Chan, D. P. C., Lo, K. K. & Cheng, A. F.(2002). Genotype spectrum of cervical human papillomavirus infection among sexually transmitted disease clinic patients in Hong Kong. J Med Virol 68, 273–277.[CrossRef] [Google Scholar]
  5. Christensen, N. D., Kreider, J. W., Cladel, N. M. & Galloway, D. A.(1990). Immunological cross-reactivity to laboratory-produced HPV-11 virions of polysera raised against bacterially derived fusion proteins and synthetic peptides of HPV-6B and HPV-16 capsid proteins. Virology 175, 1–9.[CrossRef] [Google Scholar]
  6. Christensen, N. D., Kirnbauer, R., Schiller, J. T., Ghim, S. J., Schlegel, R., Jenson, A. B. & Kreider, J. W.(1994). Human papillomavirus type-6 and type-11 have antigenically distinct strongly immunogenic conformationally dependent neutralizing epitopes. Virology 205, 329–335.[CrossRef] [Google Scholar]
  7. Christensen, N. D., Dillner, J., Eklund, C., Caarter, J., Wipf, G., Reed, C., Cladel, N. & Galloway, D. A.(1996). Surface conformational and linear epitopes on HPV-16 and HPV-18 L1 virus-like particles as defined by monoclonal antibodies. Virology 223, 174–184.[CrossRef] [Google Scholar]
  8. Combita, A. L., Touze, A., Bousarghin, L., Sizaret, P. Y., Munoz, N. & Coursaget, P.(2001). Gene transfer using human papillomavirus pseudovirions varies according to virus genotype and requires cell surface heparan sulfate. FEMS Microbiol Lett 204, 183–188.[CrossRef] [Google Scholar]
  9. Culp, T. D. & Christensen, N. D.(2003). Quantitative RT-PCR assay for HPV infection in cultured cells. J Virol Methods 111, 135–144.[CrossRef] [Google Scholar]
  10. Culp, T. D., Budgeon, L. R. & Christensen, N. D.(2006a). Human papillomaviruses bind a basal extracellular matrix component secreted by keratinocytes which is distinct from a membrane-associated receptor. Virology 347, 147–159.[CrossRef] [Google Scholar]
  11. Culp, T. D., Budgeon, L. R., Marinkovich, M. P., Meneguzzi, G. & Christensen, N. D.(2006b). Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol 80, 8940–8950.[CrossRef] [Google Scholar]
  12. Culp, T. D., Spatz, C. M., Reed, C. A. & Christensen, N. D.(2007). Binding and neutralization efficiencies of monoclonal antibodies, Fab fragments, and scRv specific for L1 epitopes on the capsid of infectious HPV particles. Virology 361, 435–446.[CrossRef] [Google Scholar]
  13. Day, P. M., Lowy, D. R. & Schiller, J. T.(2003). Papillomaviruses infect cells via a clathrin-dependent pathway. Virology 307, 1–11.[CrossRef] [Google Scholar]
  14. Day, P. M., Thompson, C. D., Buck, C. B., Pang, Y. Y. S., Lowy, D. R. & Schiller, J. T.(2007). Neutralization of human papillomavirus with monoclonal antibodies reveals different mechanisms of inhibition. J Virol 81, 8784–8792.[CrossRef] [Google Scholar]
  15. Fukuchi, E., Sawaya, G. F., Chirenje, M., Magure, T., Tuveson, J., Ma, Y., Shiboski, S., Da Costa, M., Palefsky, J. & other authors(2009). Cervical human papillomavirus incidence and persistence in a cohort of HIV-negative women in Zimbabwe. Sex Transm Dis 36, 305–311.[CrossRef] [Google Scholar]
  16. Gonzalez-Losa, M. del R., Rosado-Lopez, I., Valdez-Gonzalez, N. & Puerto-Solis, M.(2004). High prevalence of human papillomavirus type 58 in Mexican colposcopy patients. J Clin Virol 29, 202–205. [Google Scholar]
  17. Harper, D. M., Franco, E. L., Wheeler, C. M., Moscicki, A. B., Romonowski, B., Roteli-Martins, C. M., Jenkins, D., Schuind, A., Clemens, S. A. C. & Dubin, G.(2006). Sustained efficacy up to 4–5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367, 1247–1255.[CrossRef] [Google Scholar]
  18. Johnson, K. M., Kines, R. C., Roberts, J. N., Lowy, D. R., Schiller, J. T. & Day, P. M.(2009). Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol 83, 2067–2074.[CrossRef] [Google Scholar]
  19. Joyce, J. G., Tung, J. S., Przysiecki, C. T., Cook, J. C., Lehman, E. D., Sands, J. A., Jansens, K. U. & Keller, P. M.(1999). The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem 274, 5810–5822.[CrossRef] [Google Scholar]
  20. Kirnbauer, R., Taub, J., Greenstone, H., Roden, R., Durst, M., Gissmann, L., Lowy, D. R. & Schiller, J. T.(1993). Efficient self-assembly of human papillomavirus type-16 L1 and L1–L2 into virus-like particles. J Virol 67, 6929–6936. [Google Scholar]
  21. Mejia, A. F., Culp, T. D., Cladel, N. M., Balogh, K. K., Budgeon, L. R., Buck, C. B. & Christensen, N. D.(2006). Preclinical model to test human papillomavirus virus (HPV) capsid vaccines in vivo using infectious HPV/cottontail rabbit papillomavirus chimeric papillomavirus particles. J Virol 80, 12393–12397.[CrossRef] [Google Scholar]
  22. Munoz, N., Bosch, F. X., de Sanjose, S., Herrero, R., Castellsague, X., Shah, K. V., Snijders, P. J. F. & Meijer, C. J. L. M.(2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348, 518–527.[CrossRef] [Google Scholar]
  23. Pastrana, D. V., Buck, C. B., Pang, Y. Y. S., Thompson, C. D., Castle, P. E., FitzGerald, P. C., Kjaer, S. K., Lowy, D. R. & Schiller, J. T.(2004). Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 321, 205–216.[CrossRef] [Google Scholar]
  24. Patterson, N. A., Smith, J. L. & Ozbun, M. A.(2005). Human papillomavirus type 31b infection of human keratinocytes does not require heparan sulfate. J Virol 79, 6838–6847.[CrossRef] [Google Scholar]
  25. Pyeon, D., Lambert, P. F. & Ahlquist, P.(2005). Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation. Proc Natl Acad Sci U S A 102, 9311–9316.[CrossRef] [Google Scholar]
  26. Rizk, R. Z., Christensen, N. D., Michael, K. M., Muller, M., Sehr, P., Waterboer, T. & Pawlita, M.(2008). Reactivity pattern of 92 monoclonal antibodies with 15 human papillomavirus types. J Gen Virol 89, 117–129.[CrossRef] [Google Scholar]
  27. Schmiedeskamp, M. R. & Kockler, D. R.(2006). Human papillomavirus vaccines. Ann Pharmacother 40, 1344–1352.[CrossRef] [Google Scholar]
  28. Selinka, H. C., Florin, L., Patel, H. D., Freitag, K., Schmidtke, M., Makarov, V. A. & Sapp, M.(2007). Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J Virol 81, 10970–10980.[CrossRef] [Google Scholar]
  29. Smith, J. L., Campos, S. K. & Ozbun, M. A.(2007). Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol 81, 9922–9931.[CrossRef] [Google Scholar]
  30. Stanley, M. A.(2006). Human papillomavirus vaccines. Rev Med Virol 16, 139–149.[CrossRef] [Google Scholar]
  31. Villa, L. L., Costa, R. L. R., Petta, C. A., Andrade, R. P., Ault, K. A., Giuliano, A. R., Wheeler, C. M., Koutsky, L. A., Malm, C. & other authors(2005). Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol 6, 271–278.[CrossRef] [Google Scholar]
  32. Xi, L. F., Toure, P., Critchlow, C. W., Hawes, S. E., Dembele, A., Sow, P. S. & Kiviat, N. B.(2003). Prevalence of specific types of human papillomavirus and cervical squamous intraepithelial lesions in consecutive, previously unscreened, West-African women over 35 years of age. Int J Cancer 103, 803–809.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error