1887

Abstract

The hepatitis C virus NS5A protein has been previously demonstrated to partially attenuate activation of the Ras–Erk signalling pathway, via a conserved class II polyproline motif located towards the C terminus of the protein. However, the role of Ras–Erk signalling in the virus life cycle remains undetermined. To investigate this, levels of RNA replication were measured in genotypes 1 and 2 transient luciferase subgenomic replicon systems in the context of either pharmacological or genetic (dominant-negative) inhibition of MEK1, a kinase in the Ras–Erk signalling cascade. Incubation in the presence of two inhibitors (U0126 and PD184352) resulted in a decrease in the levels of RNA replication, conversely incubation with inhibitor PD98059 resulted in a modest increase in replication. The results obtained with PD98059 could not be explained by an off-target effect on Cox-2, stability of replicon RNA or stimulation of global translation levels, suggesting stimulation by a yet uncharacterized mechanism. To verify data obtained using pharmacological inhibitors the transient replicon RNA was co-electroporated with a dominant-negative mutant of MEK1. This resulted in a reduction in replication, confirming data seen with U0126 and PD184352. Our data are consistent with the hypothesis that a low level Ras–Erk signalling activity is required for RNA replication. However, complete inhibition of Ras–Erk signalling is inhibitory. These results suggest that perturbation of this signalling pathway by NS5A may be a mechanism to regulate levels of genomic RNA replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.016899-0
2010-03-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/3/671.html?itemId=/content/journal/jgv/10.1099/vir.0.016899-0&mimeType=html&fmt=ahah

References

  1. Appel, N., Pietschmann, T. & Bartenschlager, R. ( 2005; ). Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J Virol 79, 3187–3194.[CrossRef]
    [Google Scholar]
  2. Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C. J., McLauchlan, H., Klevernic, I., Arthur, J. S., Alessi, D. R. & Cohen, P. ( 2007; ). The selectivity of protein kinase inhibitors: a further update. Biochem J 408, 297–315.[CrossRef]
    [Google Scholar]
  3. Blight, K. J., McKeating, J. A. & Rice, C. M. ( 2002; ). Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76, 13001–13014.[CrossRef]
    [Google Scholar]
  4. Borsch-Haubold, A. G., Pasquet, S. & Watson, S. P. ( 1998; ). Direct inhibition of cyclooxygenase-1 and -2 by the kinase inhibitors SB 203580 and PD 98059. SB 203580 also inhibits thromboxane synthase. J Biol Chem 273, 28766–28772.[CrossRef]
    [Google Scholar]
  5. Coito, C., Diamond, D. L., Neddermann, P., Korth, M. J. & Katze, M. G. ( 2004; ). High-throughput screening of the yeast kinome: identification of human serine/threonine protein kinases that phosphorylate the hepatitis C virus NS5A protein. J Virol 78, 3502–3513.[CrossRef]
    [Google Scholar]
  6. Cowley, S., Paterson, H., Kemp, P. & Marshall, C. J. ( 1994; ). Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841–852.[CrossRef]
    [Google Scholar]
  7. Davies, S. P., Reddy, H., Caivano, M. & Cohen, P. ( 2000; ). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351, 95–105.[CrossRef]
    [Google Scholar]
  8. Favata, M. F., Horiuchi, K. Y., Manos, E. J., Daulerio, A. J., Stradley, D. A., Feeser, W. S., Van Dyk, D. E., Pitts, W. J., Earl, R. A. & other authors ( 1998; ). Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273, 18623–18632.[CrossRef]
    [Google Scholar]
  9. Georgopoulou, U., Caravokiri, K. & Mavromara, P. ( 2003; ). Suppression of the ERK1/2 signaling pathway from HCV NS5A protein expressed by herpes simplex recombinant viruses. Arch Virol 148, 237–251.[CrossRef]
    [Google Scholar]
  10. Huang, Y., Chen, X. C., Konduri, M., Fomina, N., Lu, J., Jin, L., Kolykhalov, A. & Tan, S. L. ( 2006; ). Mechanistic link between the anti-HCV effect of interferon gamma and control of viral replication by a Ras-MAPK signaling cascade. Hepatology 43, 81–90.[CrossRef]
    [Google Scholar]
  11. Hughes, M., Gretton, S., Shelton, H., Brown, D. D., McCormick, C. J., Angus, A. G., Patel, A. H., Griffin, S. & Harris, M. ( 2009; ). A conserved proline between domains II and III of hepatitis C virus NS5A influences both RNA replication and virus assembly. J Virol 83, 10788–10796.[CrossRef]
    [Google Scholar]
  12. Krieger, N., Lohmann, V. & Bartenschlager, R. ( 2001; ). Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol 75, 4614–4624.[CrossRef]
    [Google Scholar]
  13. Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L. & Bartenschlager, R. ( 1999; ). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.[CrossRef]
    [Google Scholar]
  14. Macdonald, A. & Harris, M. ( 2004; ). Hepatitis C virus NS5A: tales of a promiscuous protein. J Gen Virol 85, 2485–2502.[CrossRef]
    [Google Scholar]
  15. Macdonald, A., Crowder, K., Street, A., McCormick, C., Saksela, K. & Harris, M. ( 2003; ). The hepatitis C virus non-structural NS5A protein inhibits activating P-protein-1 function by perturbing Ras-ERK pathway signaling. J Biol Chem 278, 17775–17784.[CrossRef]
    [Google Scholar]
  16. Macdonald, A., Chan, J. K. & Harris, M. ( 2005a; ). Perturbation of epidermal growth factor receptor complex formation and Ras signalling in cells harbouring the hepatitis C virus subgenomic replicon. J Gen Virol 86, 1027–1033.[CrossRef]
    [Google Scholar]
  17. Macdonald, A., Mazaleyrat, S., McCormick, C., Street, A., Burgoyne, N. J., Jackson, R. M., Cazeaux, V., Shelton, H., Saksela, K. & Harris, M. ( 2005b; ). Further studies on hepatitis C virus NS5A–SH3 domain interactions: identification of residues critical for binding and implications for viral RNA replication and modulation of cell signalling. J Gen Virol 86, 1035–1044.[CrossRef]
    [Google Scholar]
  18. Mankouri, J., Griffin, S. & Harris, M. ( 2008; ). The hepatitis C virus non-structural protein NS5A alters the trafficking profile of the epidermal growth factor receptor. Traffic 9, 1497–1509.[CrossRef]
    [Google Scholar]
  19. Murata, T., Hijikata, M. & Shimotohno, K. ( 2005; ). Enhancement of internal ribosome entry site-mediated translation and replication of hepatitis C virus by PD98059. Virology 340, 105–115.[CrossRef]
    [Google Scholar]
  20. Nanda, S. K., Herion, D. & Liang, T. J. ( 2006; ). The SH3 binding motif of HCV NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. Gastroenterology 130, 794–809.[CrossRef]
    [Google Scholar]
  21. Neddermann, P., Quintavalle, M., Di Pietro, C., Clementi, A., Cerretani, M., Altamura, S., Bartholomew, L. & De Francesco, R. ( 2004; ). Reduction of hepatitis C virus NS5A hyperphosphorylation by selective inhibition of cellular kinases activates viral RNA replication in cell culture. J Virol 78, 13306–13314.[CrossRef]
    [Google Scholar]
  22. Sarfraz, S., Hamid, S., Siddiqui, A., Hussain, S., Pervez, S. & Alexander, G. ( 2008; ). Altered expression of cell cycle and apoptotic proteins in chronic hepatitis C virus infection. BMC Microbiol 8, 133 [CrossRef]
    [Google Scholar]
  23. Scholle, F., Li, K., Bodola, F., Ikeda, M., Luxon, B. A. & Lemon, S. M. ( 2004; ). Virus-host cell interactions during hepatitis C virus RNA replication: impact of polyprotein expression on the cellular transcriptome and cell cycle association with viral RNA synthesis. J Virol 78, 1513–1524.[CrossRef]
    [Google Scholar]
  24. Tan, S. L., Nakao, H., He, Y., Vijaysri, S., Neddermann, P., Jacobs, B. L., Mayer, B. J. & Katze, M. G. ( 1999; ). NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling. Proc Natl Acad Sci U S A 96, 5533–5538.[CrossRef]
    [Google Scholar]
  25. Targett-Adams, P. & McLauchlan, J. ( 2005; ). Development and characterization of a transient-replication assay for the genotype 2a hepatitis C virus subgenomic replicon. J Gen Virol 86, 3075–3080.[CrossRef]
    [Google Scholar]
  26. Trujillo-Murillo, K., Rincon-Sanchez, A. R., Martinez-Rodriguez, H., Bosques-Padilla, F., Ramos-Jimenez, J., Barrera-Saldana, H. A., Rojkind, M. & Rivas-Estilla, A. M. ( 2008; ). Acetylsalicylic acid inhibits hepatitis C virus RNA and protein expression through cyclooxygenase 2 signaling pathways. Hepatology 47, 1462–1472.[CrossRef]
    [Google Scholar]
  27. Waris, G. & Siddiqui, A. ( 2005; ). Hepatitis C virus stimulates the expression of cyclooxygenase-2 via oxidative stress: role of prostaglandin E2 in RNA replication. J Virol 79, 9725–9734.[CrossRef]
    [Google Scholar]
  28. Zhu, H. & Liu, C. ( 2003; ). Interleukin-1 inhibits hepatitis C virus subgenomic RNA replication by activation of extracellular regulated kinase pathway. J Virol 77, 5493–5498.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.016899-0
Loading
/content/journal/jgv/10.1099/vir.0.016899-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error