1887

Abstract

Alterations of the receptor-binding properties of swine influenza A viruses (SIVs) during their isolation in embryonated chicken eggs have not been well studied. In this study, the receptor-binding properties of classical H1 SIVs isolated solely in eggs or Madin–Darby canine kidney (MDCK) cells were examined. Sequencing analysis revealed substitutions of D190V/N or D225G in the haemagglutinin (HA) proteins in egg isolates, whereas MDCK isolates retained HA genes identical to those of the original viruses present in the clinical samples. Egg isolates with substitution of either D190V/N or D225G had increased haemagglutinating activity for mouse and sheep erythrocytes, but reduced activity for rabbit erythrocytes. Additionally, egg isolates with D225G had increased haemagglutination activity for chicken erythrocytes. A direct binding assay using a sialyl glycopolymer that possessed either a 5--acetylneuraminic acid (Neu5Ac) 2,6galactose (Gal) or a Neu5Ac2,3Gal linkage revealed that the egg isolates used in this study showed higher binding activity to the Neu5Ac2,3Gal receptor than MDCK isolates. Increased binding activity of the egg isolates to the Neu5Ac2,3Gal receptor was also confirmed by haemagglutination assay with resialylated chicken erythrocytes by Gal1,3/4GlcNAc2,3-sialyltransferase. These observations were reinforced by flow-cytometric and -glycan analyses of the erythrocytes. The 2,3-linked sialic acids were expressed predominantly on the surface of mouse and sheep erythrocytes. Chicken erythrocytes expressed Neu5Ac2,3Gal more abundantly than Neu5Ac2,6Gal, and rabbit erythrocytes expressed both 5--glycolylneuraminic acid (Neu5Gc) 2,6Gal and Neu5Ac2,6Gal. Our results demonstrate clearly that classical H1 SIVs undergo alterations in receptor-binding activity associated with an amino acid substitution in the HA protein during isolation and propagation in embryonated chicken eggs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.016691-0
2010-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/4/938.html?itemId=/content/journal/jgv/10.1099/vir.0.016691-0&mimeType=html&fmt=ahah

References

  1. Brown, I. H., Harris, P. A., McCauley, J. W. & Alexander, D. J. ( 1998; ). Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J Gen Virol 79, 2947–2955.
    [Google Scholar]
  2. Campitelli, L., Donatelli, I., Foni, E., Castrucci, M. R., Fabiani, C., Kawaoka, Y., Krauss, S. & Webster, R. G. ( 1997; ). Continued evolution of H1N1 and H3N2 influenza viruses in pigs in Italy. Virology 232, 310–318.[CrossRef]
    [Google Scholar]
  3. CDC ( 2009; ). Swine influenza A (H1N1) infection in two children – Southern California, March–April 2009. MMWR Morb Mortal Wkly Rep 58, 400–402.
    [Google Scholar]
  4. Choi, Y. K., Goyal, S. M., Farnham, M. W. & Joo, H. S. ( 2002; ). Phylogenetic analysis of H1N2 isolates of influenza A virus from pigs in the United States. Virus Res 87, 173–179.[CrossRef]
    [Google Scholar]
  5. Gambaryan, A. S., Robertson, J. S. & Matrosovich, M. N. ( 1999; ). Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. Virology 258, 232–239.[CrossRef]
    [Google Scholar]
  6. Gambaryan, A. S., Karasin, A. I., Tuzikov, A. B., Chinarev, A. A., Pazynina, G. V., Bovin, N. V., Matrosovich, M. N., Olsen, C. W. & Klimov, A. I. ( 2005; ). Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus Res 114, 15–22.[CrossRef]
    [Google Scholar]
  7. Gamblin, S. J., Haire, L. F., Russell, R. J., Stevens, D. J., Xiao, B., Ha, Y., Vasisht, N., Steinhauer, D. A., Daniels, R. S. & other authors ( 2004; ). The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303, 1838–1842.[CrossRef]
    [Google Scholar]
  8. Guan, Y., Shortridge, K. F., Krauss, S., Li, P. H., Kawaoka, Y. & Webster, R. G. ( 1996; ). Emergence of avian H1N1 influenza viruses in pigs in China. J Virol 70, 8041–8046.
    [Google Scholar]
  9. Higa, H. H., Rogers, G. N. & Paulson, J. C. ( 1985; ). Influenza virus hemagglutinins differentiate between receptor determinants bearing N-acetyl-, N-glycollyl-, and N,O-diacetylneuraminic acids. Virology 144, 279–282.[CrossRef]
    [Google Scholar]
  10. Ito, T., Suzuki, Y., Mitnaul, L., Vines, A., Kida, H. & Kawaoka, Y. ( 1997a; ). Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology 227, 493–499.[CrossRef]
    [Google Scholar]
  11. Ito, T., Suzuki, Y., Takada, A., Kawamoto, A., Otsuki, K., Masuda, H., Yamada, M., Suzuki, T., Kida, H. & Kawaoka, Y. ( 1997b; ). Differences in sialic acid–galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol 71, 3357–3362.
    [Google Scholar]
  12. Ito, T., Couceiro, J. N., Kelm, S., Baum, L. G., Krauss, S., Castrucci, M. R., Donatelli, I., Kida, H., Paulson, J. C. & other authors ( 1998; ). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72, 7367–7373.
    [Google Scholar]
  13. Karasin, A. I., Olsen, C. W. & Anderson, G. A. ( 2000; ). Genetic characterization of an H1N2 influenza virus isolated from a pig in Indiana. J Clin Microbiol 38, 2453–2456.
    [Google Scholar]
  14. Karasin, A. I., Carman, S. & Olsen, C. W. ( 2006; ). Identification of human H1N2 and human–swine reassortant H1N2 and H1N1 influenza A viruses among pigs in Ontario, Canada (2003 to 2005). J Clin Microbiol 44, 1123–1126.[CrossRef]
    [Google Scholar]
  15. Katz, J. M., Naeve, C. W. & Webster, R. G. ( 1987; ). Host cell-mediated variation in H3N2 influenza viruses. Virology 156, 386–395.[CrossRef]
    [Google Scholar]
  16. Kida, H., Ito, T., Yasuda, J., Shimizu, Y., Itakura, C., Shortridge, K. F., Kawaoka, Y. & Webster, R. G. ( 1994; ). Potential for transmission of avian influenza viruses to pigs. J Gen Virol 75, 2183–2188.[CrossRef]
    [Google Scholar]
  17. Lamb, R. A. & Krug, R. M. ( 2001; ). Orthomyxoviridae: the viruses and their replication. In Fields Virology, 4th edn, pp. 1487–1531. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia, PA: Lippincott Williams & Wilkins.
  18. Matrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M. R., Donatelli, I. & Kawaoka, Y. ( 2000; ). Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74, 8502–8512.[CrossRef]
    [Google Scholar]
  19. Myers, K. P., Olsen, C. W. & Gray, G. C. ( 2007; ). Cases of swine influenza in humans: a review of the literature. Clin Infect Dis 44, 1084–1088.[CrossRef]
    [Google Scholar]
  20. Nobusawa, E., Aoyama, T., Kato, H., Suzuki, Y., Tateno, Y. & Nakajima, K. ( 1991; ). Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182, 475–485.[CrossRef]
    [Google Scholar]
  21. Olsen, C. W., Carey, S., Hinshaw, L. & Karasin, A. I. ( 2000; ). Virologic and serologic surveillance for human, swine and avian influenza virus infections among pigs in the north-central United States. Arch Virol 145, 1399–1419.[CrossRef]
    [Google Scholar]
  22. Olsen, C. W., Brown, I. H., Easterday, B. C. & Van Reeth, K. ( 2006a; ). Swine influenza. In Diseases of Swine, pp. 469–482. Edited by D. J. Straw, J. J. Zimmerman, S. d'Alaaire & D. J. Taylor. Oxford: Blackwell Publishing.
  23. Olsen, C. W., Karasin, A. I., Carman, S., Li, Y., Bastien, N., Ojkic, D., Alves, D., Charbonneau, G., Henning, B. M. & other authors ( 2006b; ). Triple reassortant H3N2 influenza A viruses, Canada, 2005. Emerg Infect Dis 12, 1132–1135.[CrossRef]
    [Google Scholar]
  24. Robertson, J. S., Bootman, J. S., Newman, R., Oxford, J. S., Daniels, R. S., Webster, R. G. & Schild, G. C. ( 1987; ). Structural changes in the haemagglutinin which accompany egg adaptation of an influenza A(H1N1) virus. Virology 160, 31–37.[CrossRef]
    [Google Scholar]
  25. Rogers, G. N. & D'Souza, B. L. ( 1989; ). Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173, 317–322.[CrossRef]
    [Google Scholar]
  26. Rogers, G. N. & Paulson, J. C. ( 1983; ). Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127, 361–373.[CrossRef]
    [Google Scholar]
  27. Saito, T., Suzuki, H., Maeda, K., Inai, K., Takemae, N., Uchida, Y. & Tsunemitsu, H. ( 2008; ). Molecular characterization of an H1N2 swine influenza virus isolated in Miyazaki, Japan, in 2006. J Vet Med Sci 70, 423–427.[CrossRef]
    [Google Scholar]
  28. Shi, W. F., Gibbs, M. J., Zhang, Y. Z., Zhang, Z., Zhao, X. M., Jin, X., Zhu, C. D., Yang, M. F., Yang, N. N. & other authors ( 2008; ). Genetic analysis of four porcine avian influenza viruses isolated from Shandong, China. Arch Virol 153, 211–217.[CrossRef]
    [Google Scholar]
  29. Shinde, V., Bridges, C. B., Uyeki, T. M., Shu, B., Balish, A., Xu, X., Lindstrom, S., Gubareva, L. V., Deyde, V. & other authors ( 2009; ). Triple-reassortant swine influenza A (H1) in humans in the United States, 2005–2009. N Engl J Med 360, 2616–2625.[CrossRef]
    [Google Scholar]
  30. Sriwilaijaroen, N., Kondo, S., Yagi, H., Wilairat, P., Hiramatsu, H., Ito, M., Ito, Y., Kato, K. & Suzuki, Y. ( 2009; ). Analysis of N-glycans in embryonated chicken egg chorioallantoic and amniotic cells responsible for binding and adaptation of human and avian influenza viruses. Glycoconj J 26, 433–443.[CrossRef]
    [Google Scholar]
  31. Suzuki, T., Horiike, G., Yamazaki, Y., Kawabe, K., Masuda, H., Miyamoto, D., Matsuda, M., Nishimura, S.-I., Yamagata, T. & other authors ( 1997; ). Swine influenza virus strains recognize sialylsugar chains containing the molecular species of sialic acid predominantly present in the swine tracheal epithelium. FEBS Lett 404, 192–196.[CrossRef]
    [Google Scholar]
  32. Takahashi, N. & Kato, K. ( 2003; ). galxy (glycoanalysis by the three axes of MS and chromatography): a web application that assists structural analyses of N-glycans. Trends Glycosci Glycotechnol 15, 235–251.[CrossRef]
    [Google Scholar]
  33. Takano, R., Nidom, C., Kiso, M., Muramoto, Y., Yamada, S., Shinya, K., Sakai-Tagawa, Y. & Kawaoka, Y. ( 2009; ). A comparison of the pathogenicity of avian and swine H5N1 influenza viruses in Indonesia. Arch Virol 154, 677–681.[CrossRef]
    [Google Scholar]
  34. Takemae, N., Parchariyanon, S., Damrongwatanapokin, S., Uchida, Y., Ruttanapumma, R., Watanabe, C., Yamaguchi, S. & Saito, T. ( 2008; ). Genetic diversity of swine influenza viruses isolated from pigs during 2000 to 2005 in Thailand. Influenza Other Respi Viruses 2, 181–189.[CrossRef]
    [Google Scholar]
  35. Van Reeth, K. ( 2007; ). Avian and swine influenza viruses: our current understanding of the zoonotic risk. Vet Res 38, 243–260.[CrossRef]
    [Google Scholar]
  36. Vincent, A. L., Ma, W., Lager, K. M., Janke, B. H., Richt, J. A., Karl, M., Aaron, J. S. & Murphy, F. A. ( 2008; ). Swine influenza viruses: a North American perspective. Adv Vir Res 72, 127–154.
    [Google Scholar]
  37. Webby, R. J., Swenson, S. L., Krauss, S. L., Gerrish, P. J., Goyal, S. M. & Webster, R. G. ( 2000; ). Evolution of swine H3N2 influenza viruses in the United States. J Virol 74, 8243–8251.[CrossRef]
    [Google Scholar]
  38. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. ( 1992; ). Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152–179.
    [Google Scholar]
  39. WHO ( 2009; ). Cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO. http://www.who.int/csr/disease/avian_influenza/country/en
  40. Yassine, H. M., Khatri, M., Zhang, Y. J., Lee, C. W., Byrum, B. A., O'Quin, J., Smith, K. A. & Saif, Y. M. ( 2009; ). Characterization of triple reassortant H1N1 influenza A viruses from swine in Ohio. Vet Microbiol 139, 132–139.[CrossRef]
    [Google Scholar]
  41. Yoneyama, S., Hayashi, T., Kojima, H., Usami, Y., Kubo, M., Takemae, N., Uchida, Y. & Saito, T. ( 2010; ). Occurrence of a pig respiratory disease associated with swine influenza A (H1N2) virus in Tochigi Prefecture, Japan. J Vet Med Sci (in press). doi:10.1292/jvms.09-0342
  42. Yu, H., Zhang, P. C., Zhou, Y. J., Li, G. X., Pan, J., Yan, L. P., Shi, X. X., Liu, H. L. & Tong, G. Z. ( 2009; ). Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Biochem Biophys Res Commun 386, 278–283.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.016691-0
Loading
/content/journal/jgv/10.1099/vir.0.016691-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 938–948

Comparison of HPLC profiles of pyridylamino derivatives of -glycans derived from rabbit and chicken erythrocytes [ PDF] (194 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error