Feline infectious peritonitis (FIP) is a lethal systemic disease caused by FIP virus (FIPV), a virulent mutant of apathogenic feline enteric coronavirus (FECV). We analysed the 3c gene – a proposed virulence marker – in 27 FECV- and 28 FIPV-infected cats. Our findings suggest that functional 3c protein expression is crucial for FECV replication in the gut, but dispensable for systemic FIPV replication. Whilst intact in all FECVs, the 3c gene was mutated in the majority (71.4 %) of FIPVs, but not in all, implying that mutation in 3c is not the (single) cause of FIP. Most cats with FIP had no detectable intestinal feline coronaviruses (FCoVs) and had seemingly cleared the primary FECV infection. In those with detectable intestinal FCoV, the virus always had an intact 3c and seemed to have been acquired by FECV superinfection. Apparently, 3c-inactivated viruses replicate not at all – or only poorly – in the gut, explaining the rare incidence of FIP outbreaks.


Article metrics loading...

Loading full text...

Full text loading...



  1. Brown, M. A., Troyer, J. L., Pecon-Slattery, J., Roelke, M. E. & O'Brien, S. J.(2009). Genetics and pathogenesis of feline infectious peritonitis virus. Emerg Infect Dis 15, 1445–1452.[CrossRef] [Google Scholar]
  2. de Groot, R. J. & Horzinek, M. C.(1995). Feline infectious peritonitis. In The Coronaviridae, pp. 293–309. Edited by S. G. Siddell. New York: Plenum Press.
  3. de Groot-Mijnes, J. D., van Dun, J. M., van der Most, R. G. & de Groot, R. J.(2005). Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease. J Virol 79, 1036–1044.[CrossRef] [Google Scholar]
  4. Dye, C. & Siddell, S. G.(2007). Genomic RNA sequence of feline coronavirus strain FCoV C1Je. J Feline Med Surg 9, 202–213.[CrossRef] [Google Scholar]
  5. Gunn-Moore, D. A., Gruffydd-Jones, T. J. & Harbour, D. A.(1998). Detection of feline coronaviruses by culture and reverse transcriptase-polymerase chain reaction of blood samples from healthy cats and cats with clinical feline infectious peritonitis. Vet Microbiol 62, 193–205.[CrossRef] [Google Scholar]
  6. Haagmans, B. L., Egberink, H. F. & Horzinek, M. C.(1996). Apoptosis and T-cell depletion during feline infectious peritonitis. J Virol 70, 8977–8983. [Google Scholar]
  7. Haijema, B. J., Volders, H. & Rottier, P. J.(2004). Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. J Virol 78, 3863–3871.[CrossRef] [Google Scholar]
  8. Haijema, B. J., Rottier, P. J. M. & de Groot, R. J.(2007). Feline coronaviruses: a tale of two-faced types. In Coronaviruses:Molecular and Cellular Biology, pp. 183–203. Edited by V. Thiel. Norfolk, UK: Caister Academic Press.
  9. Herrewegh, A. A. P. M., de Groot, R. J., Cepica, A., Egberink, H. F., Horzinek, M. C. & Rottier, P. J.(1995a). Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR. J Clin Microbiol 33, 684–689. [Google Scholar]
  10. Herrewegh, A. A., Vennema, H., Horzinek, M. C., Rottier, P. J. & de Groot, R. J.(1995b). The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology 212, 622–631.[CrossRef] [Google Scholar]
  11. Herrewegh, A. A. P. M., Mähler, M., Hedrich, H. J., Haagmans, B. L., Egberink, H. F., Horzinek, M. C., Rottier, P. J. M. & de Groot, R. J.(1997). Persistence and evolution of feline coronavirus in a closed cat-breeding colony. Virology 234, 349–363.[CrossRef] [Google Scholar]
  12. Kennedy, M., Boedeker, N., Gibbs, P. & Kania, S.(2001). Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. Vet Microbiol 81, 227–234.[CrossRef] [Google Scholar]
  13. Kipar, A., Baptiste, K., Barth, A. & Reinacher, M.(2006a). Natural FCoV infection: cats with FIP exhibit significantly higher viral loads than healthy infected cats. J Feline Med Surg 8, 69–72.[CrossRef] [Google Scholar]
  14. Kipar, A., Meli, M. L., Failing, K., Euler, T., Gomes-Keller, M. A., Schwartz, D., Lutz, H. & Reinacher, M.(2006b). Natural feline coronavirus infection: differences in cytokine patterns in association with the outcome of infection. Vet Immunol Immunopathol 112, 141–155.[CrossRef] [Google Scholar]
  15. Meli, M., Kipar, A., Müller, C., Jenal, K., Gönczi, E., Borel, N., Gunn-Moore, D., Chalmers, S., Lin, F. & other authors(2004). High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats. J Feline Med Surg 6, 69–81.[CrossRef] [Google Scholar]
  16. Oostra, M., de Haan, C. A., de Groot, R. J. & Rottier, P. J.(2006). Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M. J Virol 80, 2326–2336.[CrossRef] [Google Scholar]
  17. Pedersen, N. C.(2009). A review of feline infectious peritonitis virus infection: 1963–2008. J Feline Med Surg 11, 225–258.[CrossRef] [Google Scholar]
  18. Pedersen, N. C., Boyle, J. F., Floyd, K., Fudge, A. & Barker, J.(1981). An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am J Vet Res 42, 368–377. [Google Scholar]
  19. Pedersen, N. C., Allen, C. E. & Lyons, L. A.(2008). Pathogenesis of feline enteric coronavirus infection. J Feline Med Surg 10, 529–541.[CrossRef] [Google Scholar]
  20. Pedersen, N. C., Liu, H., Dodd, K. A. & Pesavento, P. A.(2009). Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis. Viruses 1, 166–184.[CrossRef] [Google Scholar]
  21. Poland, A. M., Vennema, H., Foley, J. E. & Pedersen, N. C.(1996). Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J Clin Microbiol 34, 3180–3184. [Google Scholar]
  22. Rottier, P. J., Nakamura, K., Schellen, P., Volders, H. & Haijema, B. J.(2005). Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. J Virol 79, 14122–14130.[CrossRef] [Google Scholar]
  23. Simons, F. A., Vennema, H., Rofina, J. E., Pol, J. M., Horzinek, M. C., Rottier, P. J. & Egberink, H. F.(2005). A mRNA PCR for the diagnosis of feline infectious peritonitis. J Virol Methods 124, 111–116.[CrossRef] [Google Scholar]
  24. Stoddart, C. A. & Scott, F. W.(1989). Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence. J Virol 63, 436–440. [Google Scholar]
  25. Vennema, H., Poland, A., Foley, J. & Pedersen, N. C.(1998). Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243, 150–157.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 2, pp. 415–420

FIP cats used, their ages, the clinical material taken for study and the form of FIP (dry or wet) with which the animal was diagnosed.

Individual GenBank accession numbers.

[ Single PDF file] (62 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error