1887

Abstract

The lymphotropic and myelotropic nature of wild-type measles virus (wt-MV) is well recognized, with dendritic cells and lymphocytes expressing the MV receptor CD150 mediating systemic spread of the virus. Infection of respiratory epithelial cells has long been considered crucial for entry of MV into the body. However, the lack of detectable CD150 on these cells raises the issue of their importance in the pathogenesis of measles. This study utilized a combination of , and model systems to characterize the susceptibility of epithelial cells to wt-MV of proven pathogenicity. Low numbers of MV-infected epithelial cells in close proximity to underlying infected lymphocytes or myeloid cells suggested infection via the basolateral side of the epithelium in the macaque model. In primary cultures of human bronchial epithelial cells, foci of MV-infected cells were only observed following infection via the basolateral cell surface. The extent of infection in primary cells was enhanced both and in cornea rim tissue by disrupting the integrity of the cells prior to the application of virus. This demonstrated that, whilst epithelial cells may not be the primary target cells for wt-MV, areas of epithelium in which tight junctions are disrupted can become infected using high m.o.i. The low numbers of MV-infected epithelial cells observed in conjunction with the absence of infectious virus release from infected primary cell cultures suggest that epithelial cells have a peripheral role in MV transmission.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.016428-0
2010-04-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/4/971.html?itemId=/content/journal/jgv/10.1099/vir.0.016428-0&mimeType=html&fmt=ahah

References

  1. Ali, M. Y. ( 1965; ). The nature of multi-nucleated cells in the nasopharynx. J Clin Pathol 18, 424–427.[CrossRef]
    [Google Scholar]
  2. Andres, O., Obojes, K., Kim, K. S., ter Meulen, V. & Schneider-Schaulies, J. ( 2003; ). CD46- and CD150-independent endothelial cell infection with wild-type measles viruses. J Gen Virol 84, 1189–1197.[CrossRef]
    [Google Scholar]
  3. Blau, D. M. & Compans, R. W. ( 1997; ). Adaptation of measles virus to polarized epithelial cells: alterations in virus entry and release. Virology 231, 281–289.[CrossRef]
    [Google Scholar]
  4. Bolande, R. P. ( 1961; ). Significance and nature of inclusion-bearing cells in the urine of patients with measles. N Engl J Med 265, 919–923.[CrossRef]
    [Google Scholar]
  5. Boyd, J. F. & Nedelkoska, N. ( 1967; ). Further observations on inclusion-bearing cells in urinary sediment in infectious diseases. J Clin Pathol 20, 835–840.[CrossRef]
    [Google Scholar]
  6. Choi, Y. H., Gay, N., Fraser, G. & Ramsay, M. ( 2008; ). The potential for measles transmission in England. BMC Public Health 8, 338 [CrossRef]
    [Google Scholar]
  7. Corry, D., Kulkarni, P. & Lipscomb, M. F. ( 1984; ). The migration of bronchoalvelolar macrophages into hilar lymph nodes. Am J Pathol 115, 321–328.
    [Google Scholar]
  8. de Swart, R. L., Ludlow, M., de Witte, L., Yanagi, Y., van Amerongen, G., McQuaid, S., Yuksel, S., Geijtenbeek, T. B., Duprex, W. P. & Osterhaus, A. D. ( 2007; ). Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 3, e178 [CrossRef]
    [Google Scholar]
  9. de Witte, L., Abt, M., Schneider-Schaulies, S., van Kooyk, Y. & Geijtenbeek, T. B. ( 2006; ). Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 80, 3477–3486.[CrossRef]
    [Google Scholar]
  10. de Witte, L., de Vries, R. D., van der Vlist, M., Yuksel, S., Litjens, M., de Swart, R. L. & Geijtenbeek, T. B. ( 2008; ). DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes. PLoS Pathog 4, e1000049 [CrossRef]
    [Google Scholar]
  11. Doherty, G. M., Christie, S. N., Skibinski, G., Puddicombe, S. M., Warke, T. J., de Courcey, F., Cross, A. L., Lyons, J. D., Ennis, M. & other authors ( 2003; ). Non-bronchoscopic sampling and culture of bronchial epithelial cells in children. Clin Exp Allergy 33, 1221–1225.[CrossRef]
    [Google Scholar]
  12. Duprex, W. P., McQuaid, S., Hangartner, L., Billeter, M. A. & Rima, B. K. ( 1999; ). Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 73, 9568–9575.
    [Google Scholar]
  13. Dylla, D. E., Michele, D. E., Campbell, K. P. & McCray, P. B. ( 2008; ). Basolateral entry and release of New and Old World arenaviruses from human airway epithelia. J Virol 82, 6034–6038.[CrossRef]
    [Google Scholar]
  14. Fulcher, M. L., Gabriel, S., Burns, K. A., Yankaskas, J. R. & Randell, S. H. ( 2005; ). Well-differentiated human airway epithelial cell cultures. Methods Mol Med 107, 183–206.
    [Google Scholar]
  15. Grais, R. F., Dubray, C., Gerstl, S., Guthmann, J. P., Djibo, A., Nargaye, K. D., Coker, J., Alberti, K. P., Cochet, A. & other authors ( 2007; ). Unacceptably high mortality related to measles epidemics in Niger, Nigeria, and Chad. PLoS Med 4, e16 [CrossRef]
    [Google Scholar]
  16. Gray, T. E., Guzman, K., Davis, C. W., Abdullah, L. H. & Nettesheim, P. ( 1996; ). Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol 14, 104–112.[CrossRef]
    [Google Scholar]
  17. Gresser, I. & Katz, S. L. ( 1960; ). Isolation of measles virus from urine. N Engl J Med 263, 452–454.[CrossRef]
    [Google Scholar]
  18. Griffin, D. E. ( 2007; ). Measles virus. In Fields Virology, 5th edn, pp. 1401–1441. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia: Lippincott Williams & Wilkins.
  19. Guttman, J. A. & Finlay, B. B. ( 2008; ). Tight junctions as targets of infectious agents. Biochim Biophys Acta 1788, 832–841.
    [Google Scholar]
  20. Hall, W. C., Kovatch, R. M., Herman, P. H. & Fox, J. G. ( 1971; ). Pathology of measles in rhesus monkeys. Vet Pathol 8, 307–319.
    [Google Scholar]
  21. Hashimoto, K., Ono, N., Tatsuo, H., Minagawa, H., Takeda, M., Takeuchi, K. & Yanagi, Y. ( 2002; ). SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J Virol 76, 6743–6749.[CrossRef]
    [Google Scholar]
  22. Kimura, A., Tosaka, K. & Nakao, T. ( 1975; ). Measles rash. I. Light and electron microscopic study of skin eruptions. Arch Virol 47, 295–307.[CrossRef]
    [Google Scholar]
  23. Kruse, M., Meinl, E., Henning, G., Kuhnt, C., Berchtold, S., Berger, T., Schuler, G. & Steinkasserer, A. ( 2001; ). Signaling lymphocytic activation molecule is expressed on mature CD83+ dendritic cells and is up-regulated by IL-1β. J Immunol 167, 1989–1995.[CrossRef]
    [Google Scholar]
  24. Lehmann, C., Wilkening, A., Leiber, D., Markus, A., Krug, N., Pabst, R. & Tschernig, T. ( 2001; ). Lymphocytes in the bronchoalveolar space re-enter the lung tissue by means of the alveolar epithelium, migrate to regional lymph nodes, and subsequently rejoin the systemic immune system. Anat Rec 264, 229–236.[CrossRef]
    [Google Scholar]
  25. Lemon, K., Rima, B. K., McQuaid, S., Allen, I. V. & Duprex, W. P. ( 2007; ). The F-gene of rodent brain-adapted mumps virus is a major determinant of neurovirulence. J Virol 81, 8293–8302.[CrossRef]
    [Google Scholar]
  26. Leonard, V. H., Sinn, P. L., Hodge, G., Miest, T., Devaux, P., Oezguen, N., Braun, W., McCray, P. B., McChesney, M. B. & Cattaneo, R. ( 2008; ). Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J Clin Invest 118, 2448–2458.
    [Google Scholar]
  27. Lightwood, R. & Nolan, R. ( 1970; ). Epithelial giant cells in measles as an acid in diagnosis. J Pediatr 77, 59–64.[CrossRef]
    [Google Scholar]
  28. Ludlow, M., Duprex, W. P., Cosby, S. L., Allen, I. V. & McQuaid, S. ( 2007; ). Advantages of using recombinant measles viruses expressing a fluorescent reporter gene with vibratome slice technology in experimental measles neuropathogenesis. Neuropathol Appl Neurobiol 34, 424–434.
    [Google Scholar]
  29. McQuaid, S. & Cosby, S. L. ( 2002; ). An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab Invest 82, 403–409.[CrossRef]
    [Google Scholar]
  30. McQuaid, S., Cosby, S. L., Koffi, K., Honde, M., Kirk, J. & Lucas, S. B. ( 1998; ). Distribution of measles virus in the central nervous system of HIV-seropositive children. Acta Neuropathol 96, 637–642.[CrossRef]
    [Google Scholar]
  31. Message, S. D. & Johnston, S. L. ( 2001; ). The immunology of virus infection in asthma. Eur Respir J 18, 1013–1025.[CrossRef]
    [Google Scholar]
  32. Moench, T. R., Griffin, D. E., Obriecht, C. R., Vaisberg, A. J. & Johnson, R. T. ( 1988; ). Acute measles in patients with and without neurological involvement: distribution of measles virus antigen and RNA. J Infect Dis 158, 433–442.[CrossRef]
    [Google Scholar]
  33. Olding-Stenkvist, E. & Bjorvatn, B. ( 1976; ). Rapid detection of measles virus in skin rashes by immunofluorescence. J Infect Dis 134, 463–469.[CrossRef]
    [Google Scholar]
  34. Reed, L. J. & Muench, H. ( 1938; ). A simple method for estimating fifty percent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  35. Rima, B. K. & Duprex, W. P. ( 2006; ). Morbilliviruses and human disease. J Pathol 208, 199–214.[CrossRef]
    [Google Scholar]
  36. Scheifele, D. W. & Forbes, C. E. ( 1972; ). Prolonged giant cell excretion in severe African measles. Pediatrics 50, 867–873.
    [Google Scholar]
  37. Sherman, F. E. & Ruckle, G. ( 1958; ). In vivo and in vitro cellular changes specific for measles. AMA Arch Pathol 65, 587–599.
    [Google Scholar]
  38. Tahara, M., Takeda, M., Shirogane, Y., Hashiguchi, T., Ohno, S. & Yanagi, Y. ( 2008; ). Measles virus infects both polarized epithelial and immune cells by using distinctive receptor-binding sites on its hemagglutinin. J Virol 82, 4630–4637.[CrossRef]
    [Google Scholar]
  39. Takeda, M., Tahara, M., Hashiguchi, T., Sato, T. A., Jinnouchi, F., Ueki, S., Ohno, S. & Yanagi, Y. ( 2007; ). A human lung carcinoma cell line supports efficient measles virus growth and syncytium formation via a SLAM- and CD46-independent mechanism. J Virol 81, 12091–12096.[CrossRef]
    [Google Scholar]
  40. Vermeer, P. D., McHugh, J., Rokhlina, T., Vermeer, D. W., Zabner, J. & Welsh, M. J. ( 2007; ). Vaccinia virus entry, exit, and interaction with differentiated human airway epithelia. J Virol 81, 9891–9899.[CrossRef]
    [Google Scholar]
  41. von Messling, V., Milosevic, D. & Cattaneo, R. ( 2004; ). Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system. Proc Natl Acad Sci U S A 101, 14216–14221.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.016428-0
Loading
/content/journal/jgv/10.1099/vir.0.016428-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error